Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler toward High Performance Capacitive Pressure Sensors

Jungrak Choi,† Donguk Kwon,‡ Kyuyoung Kim,† Jaeho Park,‡ Dionisio Del Orbe,† Jimin Gu,† Junseong Ahn,† Incheol Cho,† Yongro Jeong,† Yongsuk Oh,§ and Inkyu Park,§†

†Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
‡Package Process Development Team, Samsung Electronics, Seoul, South Korea
§Center for Bio-Integrated Electronics (CBIE), Northwestern University, Evanston, Illinois 60208, United States

Supporting Information

ABSTRACT: Wearable pressure sensors have been attracting great attention for a variety of practical applications, including electronic skin, smart textiles, and healthcare devices. However, it is still challenging to realize wearable pressure sensors with sufficient sensitivity and low hysteresis under small mechanical stimuli. Herein, we introduce simple, cost-effective, and sensitive capacitive pressure sensor based on porous Ecoflex-multiwalled carbon nanotube composite (PEMC) structures, which leads to enhancing the sensitivity (6.42 and 1.72 kPa⁻¹ in a range of 0–2 and 2–10 kPa, respectively) due to a synergetic effect of the porous elastomer and percolation of carbon nanotube fillers. The PEMC structure shows excellent mechanical deformability and compliance for an effective integration with practical wearable devices. Also, the PEMC-based pressure sensor shows not only the long-term stability, low-hysteresis, and fast response under dynamic loading but also the high robustness against temperature and humidity changes. Finally, we demonstrate a prosthetic robot finger integrated with a PEMC-based pressure sensor and an actuator as well as a healthcare wristband capable of continuously monitoring blood pressure and heart rate.

KEYWORDS: wearable sensor, capacitive pressure sensor, carbon nanotube, microporous elastomer, healthcare monitoring, human–robot interface

INTRODUCTION

Wearable pressure sensors have attracted significant interest due to their great potential in a variety of applications, including healthcare monitoring,¹⁻⁴ human–machine interfaces,⁵⁻¹⁰ and electronic textiles. Especially, wearable pressure sensors capable of detecting a low-pressure regime (~10 kPa, comparable to gentle touch) and a medium-pressure regime (10–100 kPa, suitable for object manipulation) are essentially required for use in wearable applications. However, there are still challenges in accurate detection of subtle pressure with sufficient sensitivity and low hysteresis, which require the rational design of promising materials and devices.

In general, the wearable pressure sensor has been constructed based on various principles, namely, resistive,¹¹⁻¹⁶ capacitive,¹⁷⁻¹⁹ and piezoelectric effects.²⁰⁻²⁵ Among these types of pressure sensors, a capacitive pressure sensor takes advantage of its simplicity, low power consumption, and reliable operation.²⁴⁻²⁶ However, as the solid elastomer-based capacitance pressure sensor showed poor sensitivity under low pressures, previous research suggested a variety of methods for enhancing the sensitivity of capacitive pressure sensor. These methods are divided into two strategies: (1) microstructuring of elastomers and (2) incorporating high-k fillers or conductive fillers to elastomers. First, the microstructuring of elastomers, which leads to enhancing the sensitivity due to a stiffness reduction, were fabricated using three-dimensional microporous structures,²⁷,²⁸ micropyramid structures,²⁹,³⁰ micro-dome structures,³¹,³² and micropillar arrays.³³,³⁴ Second, the incorporation of various fillers, including Ag nanowires,³⁵ Ag nanoparticles,³⁶ carbon black,³⁷ CaCu₃Ti₄O₁₂,³⁸ and BaTiO₃,³⁹

Received: November 5, 2019
Accepted: December 11, 2019
Published: December 11, 2019
into the solid elastomers has been proposed. It is known that the dielectric constant of the composite can be significantly increased by adding a small number of conductive fillers near the percolation threshold as compared to the case of adding high-\(k\) fillers. Furthermore, if the conductive filler has a large aspect ratio such as silver nanowires, \(\varepsilon_r\) can be significantly increased under the compression.\(^{35,36,40,41}\) The basic principle is based on percolation threshold theory, as reported in the 1970s and 1980s.\(^{42,43}\) The composite of the solid elastomer and conductive fillers leads to increasing the dielectric constant against applied pressures.

Recently, some researchers introduced the combination of microstructured elastomers and conductive fillers to significantly increase the sensing performance. Liu et al.\(^{36}\) proposed a method for generating the composite of porous PDMS and Ag NPs. Although the Ag NPs led to increased sensitivity due to the percolation effect of the conductive nanoparticles, this pressure sensor fabricated by using a blowing agent might not reproducibly make the same porosity for different concentrations of Ag nanoparticles due to the variation in viscosity of the PDMS–AgNP composite. Furthermore, for both methods, as the air trapped inside the composite cannot escape during compression, the composite-based pressure sensor had low sensitivity due to the stiffness of the composite.\(^{44}\) Following this rationale, it is believed that porous Ecoflex (PE) based on the sugar template,\(^{27}\) containing conductive fillers such as multiwalled carbon nanotubes (MWCNTs), can yield a high synergistic effect; a sensor constructed on this idea would be of simple fabrication, low cost as compared to other microstructures and fillers, and high suitability for wearable applications. By use of a sugar template, high porosity (~80%) can be attained and air can easily come in and out during compression and release; this can increase the sensitivity and reduce the viscosity of the composite. MWCNTs were used as conductive fillers due to their high strength, oxidation stability, and high aspect ratio, which enable achieving stable responses and reaching the percolation threshold with a small amount of added MWCNTs.

Herein, we introduce simple, cost-effective, and highly sensitive capacitive pressure sensor based on porous the Ecoflex–MWCNTs composite (PEMC), which leads to enhancing the sensitivity due to a synergetic effect of the porous elastomer and percolation of carbon nanotube fillers. The PEMC structure shows excellent mechanical deformability and compliance for an effective integration with practical wearable devices. Furthermore, the PEMC-based pressure

Figure 1. (a) Schematic illustration of the PEMC fabrication process. (b-i) Schematic diagram of the PEMC-based pressure sensor using conductive fabric electrodes. (b-ii) SEM image of the PEMC structure. (b-iii) Photographic images (top view) and 3D modeling images of PE (white) and the PEMC (dark). (c) PEMC structures capable of (i) compression, (ii) bending, (iii) stretching, and (iv) stretch–twist coupling.
sensor shows not only long-term stability, negligible hysteresis, and rapid response under dynamic loading but also exhibits a highly insensitive property to change in temperature and humidity. Finally, we demonstrated two practical applications integrated with the PEMC-based pressure sensor: a prosthetic robot finger integrated with a PEMC-based pressure sensor and actuator and a healthcare wristband capable of continuously detecting blood pressure and heart rate.

RESULTS AND DISCUSSION

Figure 1a shows a schematic illustration of the PEMC fabrication process, which consists of four steps: mixture of the Ecoflex and MWCNTs, infiltration of the mixture into a sugar template, dissolution of sugars in the water, and generation of the PEMC. The PEMC structures include randomly distributed pores throughout the entire volume, as shown in Figure 1b(i). In Figure 1b(ii), the scanning electron microscope (SEM) image shows the morphology of the PEMC, in which the pore size was observed to be 288 ± 85 μm and the porosity was calculated as a value of 80.56 ± 0.84% (Figure S1 and Table S1). Figure 1b(iii) shows the photographic images of the porous Ecoflex (white) and the PEMC (dark), respectively. The PEMC structure provides an excellent flexibility and compressibility, which facilitates pressing, bending, stretching, and stretch-twist coupling, respectively, as depicted in Figure 1c.

In general, the capacitance between two large parallel electrodes is defined as
\[C = \varepsilon_0 \varepsilon_r \left(\frac{A}{d} \right) \]
where \(\varepsilon_0 \) is permittivity of space and \(\varepsilon_r \) is dielectric constant, \(d \) is the distance between electrodes, and \(A \) is the overlapping area between electrodes. The normalized capacitance change \(\frac{\Delta C}{C_0} \) can be expressed as
\[\frac{\Delta C}{C_0} = -\frac{\varepsilon'}{\varepsilon} \frac{d}{d'} - 1 \]
where \(\varepsilon, d \) and \(\varepsilon', d' \) are dielectric constant and distance between electrodes before and after the compression, respectively. For the PE and PEMC structures, the distance change is almost the same due to negligible difference of stiffness, as shown in Figure S2. Thus, \(\Delta C/C_0 \) is mainly governed by a dominant term, \(\varepsilon_{PEMC}'/\varepsilon_{PEMC} \). Figure 2a shows a schematic illustration of the structural deformation of the PEMC during the compressive loading. The structural deformation leads to increasing \(\varepsilon_{PEMC}'/\varepsilon_{PEMC} \) which depends on the replacement of the low dielectric constant (air, \(\varepsilon_{air} = 1 \)) with the high dielectric constant of a solid part of the PEMC (SPEMC) and the compression of the SPEMC. Figure 2b shows a schematic illustration of \(\frac{\Delta C}{C_0} \) of the PE and PEMC under the compressive loading, respectively. \(\frac{\Delta C}{C_0} \) of the PEMC is much higher than that of the PE due to the change of dielectric constant by the replacement of the air-filled pores (\(\Delta\varepsilon_{PEMC,1} \)) and the compression of the SPEMC (\(\Delta\varepsilon_{PEMC,2} \)). (c) Relationship between the elastic modulus of the PEMC and compressive strain. The inset shows optical images of the PEMC structure under compressive loading/unloading. (d) Experimental relationship between \(\varepsilon_{PEMC} \) of the PEMC and compressive strain.
The PEMC at different RH values. (f) Dynamic responses of the PEMC-based pressure sensor for the pressure of 10 kPa and the frequency up to 10 Hz. (d) Long-term electromechanical stability of the PEMC-based pressure sensor over 10000 cycles of a repeated compression/release test with a compressive strain of 70%. (e) $\Delta C/C_0$ of the PEMC-based pressure sensor under different temperature and humidity conditions. (i) $\Delta C/C_0$ of the PEMC-based pressure sensor vs time with a commercial load cell.

Figure 3a shows the performance of the PEMC-based pressure sensors with different concentrations of MWCNTs. (b) Hysteresis characteristics of the PEMC-based pressure sensor for the compressive strain up to 70%. (c) Dynamic responses of the PEMC-based pressure sensor for the compressive strain up to 70%. (d) Long-term electromechanical stability of the PEMC-based pressure sensor over 10000 cycles of a repeated compression/release test with a compressive strain of 70%. (e) $\Delta C/C_0$ of the PEMC-based pressure sensor under different temperature and humidity conditions. (i) $\Delta C/C_0$ of the PEMC-based pressure sensor vs time with a commercial load cell.

Figure 3a shows the pressure-sensing performance of the PEMC-based pressure sensor. $\Delta C/C_0$ under applied pressures was compared between different weight percents (0–0.6 wt %) of MWCNTs. The sensitivity (S) of the PEMC-based pressure sensor is defined as the slope of the curve ($S = \delta(\Delta C/C_0)/\delta P$), which consists of two different steps (0–2 and 2–10 kPa). In both steps, the PEMC-based pressure sensor with 0.6 wt % of MWCNTs showed an excellent pressure-sensing performance with high sensitivity ($S_{p1} = 4.62$ kPa$^{-1}$), which is nearly 4 times higher than that of the pressure sensor obtained by the PE-based pressure sensor. In the first step, this high sensitivity can be explained by the fact that the initial high number of pores in PEMC is replaced rapidly by the high dielectric constant elastomer (SPEMC) upon compression. In the second step of the pressure response, the sensitivity is observed to be higher for the higher values of MWCNTs. This sensitivity can be explained by the fact that the distribution of MWCNTs is denser as the PEMC is compressed. For the static and dynamic response tests, the PEMC-based pressure sensor shows negligible hysteresis at the compressive strain up to 70% and the frequency up to 10 Hz, respectively, as shown in Figures 3b and 3c. This can be explained by the fact that pores within the whole volume of the PEMC can reduce the volume fraction of the elastomer. As the existence of pores led to reducing the viscoelastic property of the SEMC, a reversible sensor response could be achieved without noticeable hysteresis.48,49 We also confirmed these viscoelastic properties of SEMC and PEMC using the standard solid model; a spring and the Kelvin–Voigt model are connected in series (Figures S4 and S5). In Figure 3d, the long-term stability and electromechanical durability of the PEMC were evaluated under 10000 cycles of repeated compression/release at \sim10 kPa (compressive strain of 70%). No drift of the sensor response and no structural change of the PEMC were found during the cycles. From the results, it was confirmed that the sensor is appropriate for long-term, repeated health monitoring applications such as real-time wrist pulse measurement. In Figure 3e, the PEMC-based pressure sensor was evaluated at different values of temperature and humidity. As temperature (T) increased from 20 to 75 °C, $\Delta C/C_0$ of the pressure sensor was not significantly fluctuated. This means that the sensor can be used for practical wearable devices because most of the electrical devices for these purposes should not exceed 65 °C in general. Also, when the RH changed from 15 to 90%, a variation in $\Delta C/C_0$ was not observed. The response time and recovery time of the PEMC-based pressure sensor were examined as shown in Figure 3f. Because the actuator cannot generate an ideal step displace-
ment, we are not able to accurately calculate the response and recovery times of the sensor. Instead, we compared the transient response of our sensor to that of the commercial load cell. From this result, we could conclude that the PEMC-based pressure sensor operates as fast as a commercial load cell with response and recovery times shorter than at least 0.1 s.

For wearable devices, the dimensions of the soft sensors are important factors for better wearability and less interference with diverse human motions. As shown in Figures 4a and 4b, the pressure-sensing performances of the PEMC-based pressure sensor were examined for different values of thickness and radius of the PEMC structure. The PEMC-based pressure sensor showed a similar response against the applied pressure regardless of sensor dimensions. Also, the PEMC-based pressure sensor should be evaluated under bending stimuli for use in wearable applications. In Figure 4c, \(\Delta C/C_0 \) of the PEMC-based pressure sensor were compared at \(\kappa_{\text{bending}} \) of \(\infty \), 30 mm, and 500 mm, respectively. The sensing characteristics of the PEMC-based pressure sensor on a flat surface was used as a reference. The applied stimuli were denoted as normal forces, as the effective contact area was not well-defined. The PEMC-based pressure sensor over \(\kappa_{\text{bending}} \) of 30 mm showed bending-insensitive properties under different forces (0.3, 0.6, 1.8, and 3 N). Also, the PEMC-based pressure sensor did not show any mechanical or electrical failure during the bending stimuli due to intrinsic active materials.

From the excellent sensor properties, we applied the PEMC-based pressure sensor for the prosthetic robot finger and the healthcare wristband. For the prosthetic robot finger, Ecolflex was used for the integration of the PEMC-based sensor within a prosthetic robot finger given that it is one of the most skinlike elastomers. The motion of the prosthetic finger was controlled by a fabric glove with a piezoresistive strain sensor attached to it. Figure 5a shows a 3D model of the constructed prosthetic arm, with the integrated robot finger for grasping movements; an LED is attached to the index finger to gauge the pressure sensed by the PEMC-based pressure sensor embedded into the thumb. Demonstration of the grasping abilities of the robot finger for (b) a soft material (PE) and (c) a hard material (plastic ball).
The LED brightened up as increasing pressure was applied onto the thumb; here, we demonstrated the grabbing of PE as a soft material (Figure 5b) and a plastic ball (Figure 5c) as a hard material. As shown in Movie S1 and Movie S2, we have demonstrated the feasibility of the PEMC-based pressure sensor in a smart prosthetic hand capable of stable, continuous, and accurate detection of low-pressure stimuli.

The PEMC-based pressure sensor could also be applied to a human healthcare monitoring system. The heart rate (HR) and blood pressure (BP) of an individual were monitored during resting and squatting positions as shown in Figure 6a through a healthcare wristband, which integrated an electrocardiogram (ECG) sensor and the PEMC-based pressure sensor. The healthcare wristband is composed of two ECG electrodes, two conductive fabric electrodes (Knit Jersey Conductive Fabric, Adafruit, USA), the PEMC, and a control board. The fast response and high sensitivity of the PEMC-based pressure sensor enable the high-resolution measurement of pulse waves in Figure 6b for the resting and squatting positions. From this figure, HR could be estimated by measuring the time difference between two peak points of the wrist pulse signals. As expected, the HR obtained from the interval time of the wrist signal is faster during the exercise. To validate the HR from the PEMC-based pressure sensor on wristband, this value was compared to the HR from the ECG signal (Movie S3), also integrated on the wristband, during exercise as shown in Figure 6c. The data taken from both the PEMC-based pressure sensor and ECG were in good agreement. In Figure S6, the time delay between the blood pulse signal from the PEMC-based pressure sensor and the electrical activity of the heart from ECG is defined as pulse transmit time (PTT). By use of the relationship between PTT and BP, the BP (systolic blood pressure (SBP) and diastolic blood pressure (DBP)) could be estimated. During the exercise, an increase in the SBP and a slight decrease in the DBP are observed.

CONCLUSION

In summary, we demonstrated a simple, cost-effective, wearable capacitive pressure sensor based on the PEMC structure, which provided excellent mechanical properties for an effective integration with practical wearable devices. The PEMC-based pressure sensor showed a high sensitivity with negligible hysteresis in the low-pressure regime due to a synergy effect of the porous elastomer and the existence of conductive fillers. Also, it exhibited the long-term stability and fast response under dynamic loading as well as the high stability against temperature and humidity changes. Finally, we demonstrated that the PEMC-based pressure sensor could be applied to the prosthetic robot finger and the healthcare wristband. We believe that this strategy can provide a useful approach to achieve accurate detection and real-time monitoring in the low-pressure regime for use in a variety of applications.
wearable applications such as the development of tactile sensors, human motion detection, human–machine interaction, electronic skins for soft robotics, and wearable pressure-sensing devices for health diagnosis systems.

EXPERIMENTAL SECTION

Fabrication of Cylindrically Shaped Sugar Template. A cylindrically shaped master mold for generation of a sugar template was fabricated by using a 3D printer (Ultimaker3, USA). Sugar powders were poured into the cylindrically shaped master mold. After pressing on sugar powder, the sugar template was dried in a convection oven at 100 °C for 12 h. Finally, the cylindrically shaped sugar template was detached from the master mold.

Preparation of PEMC. There are two components for the Ecoflex00-30 prepolymer solution (Smooth-On, USA): a base and a curing agent. They were mixed individually with the same concentration of MWN Ts (Hanwha, KOREA) due to the short curing time of Ecoflex. A planetary mixer was used to make the MWN Ts well dispersed in each of the prepolymer solutions. The “base–MWN Ts mixture” and the “curing agent–MWN Ts mixture” were mixed together by using a planetary mixer with a weight ratio of 1:1. A mixture of Ecoflex00-30 prepolymer and MWCNTs was infiltrated into the cylindrically shaped sugar templates in a vacuum chamber and then cured at room temperature for 5 h. The composite of sugar template–Ecoflex–MWCNTs was immersed in water to dissolve the sugar portion for the fabrication of PEMC.

Characterization of Sensor Response. A high-precision universal testing machine (AGS-X, Shimadzu, Japan) was used to evaluate the sensing performances. A disk-type compression fixture with a diameter of 40 mm was utilized for uniform deformation of the sensor. A position-controlled compression test was conducted at a compressive speed of 0.05 mm s⁻¹. During the compression, the capacitance of the sensor was measured by using LCR meter (E4980A, Agilent, USA) and a microactuator (MA-3S, Physik Instrumente, Germany) and a force transducer (SM-500N, Interface, USA) were used under a position-controlled compression with a compressive speed of 5 mm s⁻¹. Temperature and humidity were monitored by using an IR camera (E30, FLIR, USA) and a humidity sensor (SHT31 SMART, Sensiron, USA), respectively (Figure S7).

Also, a shaker (K2002E01, THE MODAL SHOP, USA) was employed to evaluate the dynamic responses of the pressure sensor at different strain rates of the sensors. The shaker was vibrated with a function generator that provided specific strain rates.

Fabrication of Prosthetic Robot Finger. A prosthetic robot finger was fabricated by first building its skeleton and then covering it with a thin skinlike elastomer. For the first part, a human hand was scanned by a 3D scanner (XYZ Printing, Taiwan) for modeling the skeleton of the robot fingers. After that, the skeleton of the robot fingers was printed by a 3D printer using thermoplastic polyurethane. The robot finger was then connected to a servo motor (DM-S0300D, China) with threads for its actuation (Figure S8). For the second part, a thin skinlike elastomer was fabricated by the following three sequential steps. First, Alja Safe powder (Smooth-On, USA) was mixed with water to form a rubbery elastomer, which was subsequently poured into a container. Second, human fingers were dipped into the container for 5 min until it was cured to form a mold for the skinlike elastomer. Finally, Ecoflex00-35 prepolymer (Smooth-On, USA) were poured into the mold back and forth to form the thin skinlike film conformably around the mold (Figure S9).

Fabrication of System for Wearable Device. For both the prosthetic robot finger and the healthcare wristband, a capacitance to digital converter (CDC, FDC1004, Texas Instruments, USA) was used instead of an LCR meter, as this allows for more compact and lightweight applications. This CDC can also shield the sensor from environmental interferences by using an out-of-phase electrical model (Figure S10). Additionally, for the healthcare wristband, an ECG sensor (PSL-IECG2, PhysioLab, KOREA) was employed, which provides three pins to attach on the human skin for obtaining the ECG signal. Furthermore, both the CDC and ECG sensors were controlled with an Arduino Uno using an I2C standard interface with a rate of 100 samples per second (SPS).

AUTHOR INFORMATION

Corresponding Authors

E-mail: inkyu@kaist.ac.kr.

E-mail: oyongsuk@kaist.ac.kr.

ORCID

Inkyu Park: 0000-0001-5761-7739

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2B2049110) and the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668). This research was also supported by the KUSTAR-KAIST Institute, KAIST, Korea.

REFERENCES