
Sensors & Actuators: B. Chemical 409 (2024) 135578

Available online 2 March 2024
0925-4005/© 2024 Elsevier B.V. All rights reserved.

Breath analysis system with convolutional neural network (CNN) for early 
detection of lung cancer 

Byeongju Lee a,b, Junyeong Lee a, Jin-Oh Lee a, Yoohwa Hwang c, Hyung-Keun Bahn c, 
Inkyu Park b, Sanghoon Jheon c,*, Dae-Sik Lee a,* 

a Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea 
b Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 
c Seoul National University Bundang Hospital, Seoul 13620, Republic of Korea   

A R T I C L E  I N F O   

Keywords: 
Lung cancer 
Exhaled breath 
Breath analyzer 
Multimodal sensor array 
Convolutional neural network (CNN) 

A B S T R A C T   

Early diagnosis of lung cancer, the leading cause of cancer-related death worldwide, is critical for reducing 
mortality rate. However, current diagnostic methods are invasive, time-consuming, costly, and may not always 
provide accurate diagnoses. For early diagnosis, recent research has focused on noninvasive approaches, 
including the detection of volatile organic compounds (VOCs) in human exhaled breath. Changes in the 
composition and concentration of VOCs in exhaled breath may indicate lung cancer, and this approach offers 
several advantages over traditional diagnostic methods. Moreover, the combination of a breath gas sensing 
system and machine learning algorithms provides a more accurate diagnosis. In this study, for the early diagnosis 
of lung cancer, a breath analysis system was developed using a gas sensor array and deep learning algorithm. The 
breath analysis system was designed to detect multiple VOCs in exhaled breath using ten semiconductor metal 
oxide (SMO), one photoionization detector (PID), nine electrochemical (EC) gas sensors. In total, 181 clinical 
breath samples (from 74 healthy controls and 107 lung cancer patients) were collected and analyzed using a 1D 
convolutional neural network (CNN) algorithm. The results showed an overall accuracy of 97.8% in classifying 
healthy controls and lung cancer patients using a complete clinical dataset. Through a comparison of the single- 
sensor type data and multimodal sensor data and performance analysis of three different deep learning models 
(multilayer perceptron, recurrent neural network, and CNN), we validated the potential of the breath analyzer 
with a multimodal sensor system and a 1D CNN as a lung cancer diagnostic device.   

1. Introduction 

Lung cancer is a serious and lethal disease that poses significant 
global health challenge. According to the recent study, the incidence 
rate of lung cancer is 11.4%, making it the second most common cancer 
after breast cancer [1]. In addition, lung cancer has been identified as 
the leading cause of cancer-related deaths, with an estimated 1.8 million 
deaths. Its severity lies not only in its high incidence but also in that it is 
frequently diagnosed at advanced stages, leading to limited treatment 
options. In 2014, the UK Office for National Statistics reported a 1-year 
survival rate for stages I and IV patients at 85% and less than 20%, 
respectively [2]. Therefore, early diagnosis is crucial for reducing the 
mortality rate of lung cancer. As a leading cause of cancer-related 
mortality worldwide, lung cancer requires continuous research to 
improve early diagnosis. 

Current diagnostic methods for lung cancer, including chest X-ray 
(CXR), computed tomography (CT), bronchoscopy, and liquid biopsies 
are invasive, expensive, time-consuming, and inaccurate [3–5]. False 
positives and an inability to distinguish between benign and malignant 
lesions can lead to unnecessary invasive procedures and patient anxiety 
[6]. Exhaled breath analysis, which utilizes sensitive breath sensors, is a 
promising method for enhancing the diagnosis of lung cancer [7–9]. 
Volatile organic compounds (VOCs) are present in exhaled breath, and 
their composition and concentration vary based on organ malfunction. 
Breath sensors detect changes in VOCs in exhaled breath, thereby 
diagnosing specific diseases. This non-invasive and rapid method offers 
great potential for detecting biomarkers suggestive of early stages of 
lung cancer. 

Through the analysis of VOC patterns, researchers have aimed to 
develop highly accurate and cost-effective diagnostic devices. The 
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analysis of exhaled breath VOCs using gas chromatography-mass spec-
trometry (GC-MS) has been widely reported [10–12]. GC-MS can accu-
rately detect various VOCs; however, it is expensive, time-consuming, 
and requires specialized expertise [13]. Furthermore, exhaled breath 
contains numerous VOCs in extremely small amounts, and the differ-
ences in VOC concentrations between healthy individuals and lung 
cancer patients often do not exhibit significant variations at the parts per 
billion (ppb) level [14,15]. To address these challenges, research has 
predominantly focused on developing electronic nose (E-nose) systems 
using multiple gas sensors and conducting a pattern analysis of the re-
sponses from these sensors to diagnose lung cancer. In previous studies, 
colorimetric [16], surface acoustic wave (SAW) [17], carbon-polymer 
array [18], quartz microbalance (QMB) [19], carbon nanotube-based 
[20], electrochemical (EC) [21], and semiconductor metal oxide 
(SMO) gas sensors [22] were utilized as breath analyzers. Each sensor 
exhibits unique characteristics and acquires distinct patterns from 
exhaled breath. Therefore, a multimodal gas-sensor system utilizing 
various types of sensors can capture a more extensive range of pattern 
information than a single-type sensor system [23–26]. In this study, we 
utilized three types of gas sensors–SMO, EC, and photoionization de-
tector (PID)–to acquire diverse exhaled-breath patterns. 

Additionally, various methods for analyzing the patterns obtained 
using breath analyzers have been studied extensively. The data obtained 
using the sensor array were used to classify lung cancer patients using 
learning models such as support vector machine (SVM) [26], linear 
discriminant analysis (LDA) [27], backpropagation neural network 
(BPANN) [28], k-near neighbor (k-NN) [29], and logistic regression 
analysis (LRA) [30]. Previously, our research team developed a breath 
analyzer with a multilayer perceptron (MLP) for lung cancer diagnosis 
[5]. While the analysis of VOC patterns in exhaled breath showed po-
tential for early diagnosis of lung cancer, its practical application was 
limited owing to its relatively low diagnostic performance and 
requirement of feature data extraction. Among the various 
deep-learning models, 1- dimension convolutional neural networks (1D 
CNNs) have proven to be effective in capturing patterns in time-series 
data, making them suitable for various applications, including natural 
language processing, sensor data analysis, and financial time-series 
forecasting [31]. Furthermore, several studies have reported the use of 
1D CNNs for diagnosing diseases by analyzing time-series data [32,33]. 

In this study, we explored the convergence of a breath analyzer with 
a multimodal gas sensor array and 1D CNN for the early diagnosis of 
lung cancer. The breath analyzer consisted of three types of gas sensors, 
valves, a mass flow controller (MFC), desorption tube, and lamp. The 
system was designed to enable automatic data collection using a gas 
flow control module. The multimodal sensor system can extract a wider 
range of patterns from exhaled breath data than a single-type sensor 
array, and the collected breath data are classified using the 1D CNN 
model. A total of 181 breath samples, from 74 healthy individuals and 
107 lung cancer patients, were used in the application of 1D CNN. To 

validate the performance of the multimodal sensor system and 1D CNN 
model used in this study, we compared its classification performance 
with that of single-type sensor data and different deep learning models. 

2. Experimental procedures 

2.1. . Study population 

We enrolled 164 participants (90 lung cancer patients and 74 healthy 
individuals) voluntarily at Seoul National University Bundang Hospital. 
The healthy control group consisted of individuals aged >18 years who 
were not receiving treatment for any respiratory conditions. Lung cancer 
patients were selected based on the following criteria: histological 
confirmation of the primary or metastatic site, presence of intra-
bronchial lesions, central lesions within the inner one-third of the hilum 
on chest CT, or peripheral lesions located beyond the outer one-third of 
the pulmonary hilum with tumors measuring >2 cm on chest CT. Lung 
cancer patients who had metabolic diseases and respiratory system 
disorders, such as chronic obstructive pulmonary disease (COPD) and 
pneumonia, were excluded from the study. Clinical characteristics of the 
enrolled participants are summarized in Table 1. 

2.2. . Design and fabrication of the breath analyzer with multimodal 
sensor array 

To design the optimal chamber shape that can facilitate a uniform 
gas measurement environment, we performed numerical simulations 
using the COMSOL Multiphysics. The dimensions of the sensors, based 
on the commercial electrochemical sensor SS2198 (SENKO, Korea), 
were reflected as a diameter of 2 cm and a height of 2 cm, including the 
electrode. In this simulation, two types of gases (buffer gas and sample 
gas) were employed. N2 was chosen as the buffer gas due to its chemical 
stability, being one of the most commonly used carrier gases. Addi-
tionally, acetone, known for its easy generation during body meta-
bolism, was selected as the sample gas. Throughout the simulation 
process, the chamber’s interior was initially purged with N2 at 1 atm. 
The flow rate of the sample gas, acetone, entering the chamber was set to 
500 sccm, with a concentration of 1 mol/m3. 

A multimodal sensor system consists of three types of gas sensors: 
SMO, EC, and PID. Each method offers unique advantages for the 
detection of VOC markers. First, the SMO gas sensor provides stable gas 
measurements with a fast response speed and high sensitivity [34]. 
Furthermore, it allows the development of various gas sensors by 
modifying the composition of the sensing material, thereby enabling 
easy customization of gas selectivity. By utilizing multiple types of SMO 
gas sensors, multiple output analyses can be performed to overcome the 
challenge of low selectivity resulting from the cross-sensitivity observed 
in individual gas sensors. The SMO gas sensors used in the system 
included TGS2444, TGS2600, TGS2602, TGS2603, TGS2610, TGS2611, 

Table 1 
Clinical characteristics of the participants.   

Lung cancer (n = 90) Healthy control (n = 74) p value  

Sex Male 54 (60%) Male 43 (58.1%) 0.775   
Female 36 (40%) Female 31 (41.9%) Female 

Age (years)  68.6 ± 8.5  51.1 ± 16.9 < 0.001  
Histology Small cell lung cancer 1 (1.1%)      

Adenocarcinoma 63 (70%)      
Squamous 19 (21.1%)      
Other 7 (7.8%)     

Stage IA 35 (38.9%)      
IB 10 (11.1%)      
IIA 10 (11.1%)      
IIB 8 (8.9%)      
IIIA 15 (16.7%)      
IIIB 1 (1.1%)      
IV 11 (12.2%)      
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TGS2612, TGS2620, and TGS3870 from Figaro (Japan) and RSM741 
from RNSLab (Korea). Secondly, EC gas sensors operate at low power, 
offering high sensitivity, and a wide measurement range [35]. This 
method facilitated the detection of promising VOC marker candidates. 
The EC gas sensors SS21F8, SS2128, and SS2198 from SENKO (Korea) 
and NE4HCHO, NE4H2S, NE4NH3, NE4NO2, NE4CO, and NE4NO from 
Nemoto (Japan) were utilized in this system. Finally, the PID gas sensor 
demonstrated the highest selectivity compared to the other methods, 
making it suitable for detecting ultra-trace VOC markers [36]. We uti-
lized miniPID2 (ION Science, UK) as the PID gas sensor. We imple-
mented a multimodal gas sensor array by employing 20 types of 
advanced gas sensors, leveraging their strengths and compensating for 
their weaknesses using different measurement methods. The results 
comparing the response of MOS gas sensors and PID gas sensors to 
different gases are presented in fig. S2. Electrochemical gas sensors, 
which are susceptible to damage due to high sensitivity to specific gases, 
were excluded from this response comparison test. 

2.3. . Exhaled breath sampling process 

We collected exhaled breath samples from two groups: lung cancer 
patients (LC, experimental group) and healthy controls (HC, control 
group). We validated the developed multimodal gas sensor system by 
measuring 107 LC and 74 HC samples. To ensure consistency in the 
collection process, the following steps were followed. 

a) Pretreatment (exhalation gas collection 1 day prior): Participants 
were instructed to adhere to dietary restrictions, limit alcohol, and 
consume strongly seasoned meals. They fasted for at least 4 hours before 
the examination. b) Exhaled gas collection: Participants refrained from 
brushing their teeth within 2 hours before exhaling into the collection 
device. They performed deep breathing at least five times before sample 
collection and rinsed their mouths with sterilized distilled water. A total 
volume of 3 L exhaled air was collected in a Tedlar bag. c) Adsorption of 
samples in Tenax tube: We adsorbed the collected breath samples onto a 
Tenax tube within 2 hours of collection, with an adsorption rate of 0.1 L/ 
min. 

Subsequently, an exhaled breath sample adsorbed onto a Tenax tube 
was inserted into the developed system. We then measured the desorbed 
exhaled breath samples from the Tenax tube using the multimodal 
sensor system. The Tenax tube, integrated into the system, is heated to 
280℃ for the desorption of the adsorbed exhaled air sample. The 
exhaled breath sample, desorbed through tube heating, is then trans-
ported to the gas chamber by the carrier gas (dry N2). During this 
transfer, the heated exhaled breath sample is cooled by the carrier gas of 
room temperature. The gas sample within the chamber is maintained at 

a temperature of approximately 40℃ and a relative humidity of 0. We 
conducted measurements on the desorbed exhaled breath samples 
moving into the chamber using the developed multimodal gas sensor 
array module. 

2.4. . Data analysis 

In the sensor data analysis, the responses of the 19 sensors were 
defined by dividing the sensor values throughout the entire measure-
ment period (Rbreath) by the sensor values just before the VOCs were 
desorbed from the Tenax tube (Rair), which served as the reference point. 
The gas sensor responses were analyzed by grouping sensors with 
similar reactivity, considering the data separately for SMO, EC, and PID 
gas sensors. 

Breath response data were utilized in neural networks for pattern 
analysis and employed to classify healthy controls and lung cancer pa-
tients. First, the classification performance of lung cancer patients using 
the 1D CNN model was evaluated. Next, we investigated the effective-
ness of the multimodal sensor system applied to the breath analyzer by 
comparing the single-type sensor and entire sensor data. The classifi-
cation performance of the models was analyzed by comparing accuracy, 
sensitivity, and specificity, calculated using the following equations, 
respectively. 

Accuracy(%) =
TP + TN

TP + FN + TN + FP
× 100  

Sensitivity(%) =
TP

TP + FN
× 100  

Specificity(%) =
TN

TN + FP
× 100 

where TP is true positive; FP, false positive; TN, true negative; and 
FN, false negative 

Finally, the classification performance of the 1D CNN model was 
compared with that of the MLP and recurrent neural network (RNN) 
models. In the analysis of these models, by including the parameters 
mentioned above, we evaluated the performance of the model using 
receiver operating characteristic (ROC) curves. The ROC curve illus-
trates the relationship between sensitivity and specificity under a spe-
cific boundary condition, and the area under the curve (AUC) values 
served as the evaluation metric for the model’s performance in classi-
fying lung cancer patients and healthy controls. 

Fig. 1. Schematic diagram of the breath analyzer and strategy for lung cancer diagnosis.  
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3. Results and discussion 

3.1. Fabricated breath analyzer with multimodal sensor system 

Fig. 1 shows the schematic diagram of the breath analysis system and 
strategy for lung cancer diagnosis. When exhaled breath samples 
collected from both healthy controls and lung cancer patients were 
injected into the breath analyzer, the sensor array data were measured 
using an automated system. The measured exhaled breath data were 

used to diagnose lung cancer using a deep-neural-network-based clas-
sification model. The feasibility of using a multimodal sensor system 
with three types of gas sensors and training it with time-series data using 
a 1D CNN was evaluated to validate its potential as a practical lung 
cancer diagnostic device. 

The structure of the gas sensor chamber and arrangement of the 
sensors were designed to optimize the gas flow based on the results of 
the gas flow simulation, as shown in Fig. 2. Firstly, an analysis of the 
dead volume within two types of chambers was conducted to identify a 

Fig. 2. Simulation results for optimal chamber design. (a) Fluid velocity distribution at various locations within the chamber based on chamber edge shapes. A 
significant decrease in dead volume area is observed in the lower chamber compared to the upper chamber. (b) Simulation results of fluid velocity and gas con-
centration for each channel length (Lch) after 60 seconds of gas injection. (c) Graphs depicting the mean and CV of concentration at each gas sensor’s center for 
different Lch values. The mean and CV remain highly stable for Lch = 20–40 cm. (d) Graphs representing the mean and CV of velocity at each gas sensor’s center for 
different Lch values. The mean velocity remains nearly the same across the four conditions, with the lowest CV observed at Lch = 30 cm. (e) Graphs displaying the 
mean and CV of concentration at each gas sensor’s center with respect to Dch and gas inflow time. From 30 seconds onwards, highly stable results are observed for all 
conditions, irrespective of Dch. (f) Graphs showing the mean and CV of velocity at each gas sensor’s center for different Dch values. The lowest CV value is observed 
at Dch = 40 mm. 
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chamber structure that can facilitate a uniform gas concentration and 
flow environment throughout the entire chamber. The upper part of 
Fig. 2(a) presents the simulation results of fluid flow within the most 
common rectangular chamber shape. This simulation revealed dead 
volumes, accounting for less than half the flow velocity compared to the 
sensor area, at the four corner regions. Such dead volumes not only 
hinder the fluid flow within the chamber but also lead to issues such as 
residue from previous sample gases during chamber cleaning for 
different sample measurements. To address this, we designed a chamber 
with edges cut at a 45◦ angle and conducted the same simulation. The 
simulation demonstrated a reduction of over 80% in the chamber’s dead 
volume. Secondly, to determine the optimal channel length (Lch, the 
width of the chamber), an analysis of fluid velocity and gas concentra-
tion at each sensor’s center in the sensor area was conducted for Lch 
values of 20, 30, 40, and 50 cm. Fig. 2(b) illustrates the gas concentra-
tion distribution (colormap) and flow velocity (red arrow) within the 
chamber after 60 seconds of gas injection under each condition. The gas 
concentration and flow velocity at the sensor area appear to be uniform 
in each chamber. For a precise comparison of concentration and velocity 
uniformity across different Lch values, we analyzed the concentration 
and velocity at each of the 16 sensors. Fig. 2(c)-(d) represent graphs 
depicting the average and Coefficient of Variation (CV, standard devi-
ation/average) of concentration and flow velocity at the centers of the 
sensors for each Lch value. Initially, the average concentration values 
show independence with respect to Lch, but the CV values of the con-
centration significantly increase by over tenfold at 50 cm (0.015 AU) 
compared to other Lch values (~ 0 AU). Similarly, for velocity, while the 
mean values show almost no dependence on Lch, the smallest CV is 
observed at Lch = 30 cm. Table S1 shows the individual gas concen-
tration and flow velocity data at each sensor position. Thirdly, to 
determine the optimal channel depth (Dch, the height of the chamber), 
an analysis of fluid velocity and gas concentration at each sensor’s 
center in the sensor area was conducted for Dch values of 3, 4, and 5 cm. 
As evident in Fig. 2(e), the average and CV values of the concentration 
for Dch = 3 and 4 cm are nearly identical. However, for velocity, the 
lowest CV value is observed at Dch = 4 cm in the graph presented in 

Fig. 2(f). Table S2 presents the raw data corresponding to the graphs in 
Figs. 2(e)–2(f). Through simulations, we determined the optimal 
chamber design as Lch: Wch: Dch = 30 cm: 10 cm: 4 cm and the 
chamber shape. 

Fig. 3 shows real images of the breath analyzer and details of the 
operational process for breath data collection. Fig. 3(a) shows the breath 
analyzer, inner components, and gas sensor chamber with a multimodal 
sensor array. The breath analyzer consisted of valves, an MFC, a 24VDC 
switching mode power supply, a lamp for gas flow control, and gas 
sensor chamber for measurement. The gas sensor chamber was 
composed of SMO, EC, PID, and temperature/humidity sensors. Fig. 3(b) 
illustrates the process from exhaled breath collection to tube adsorption, 
breath-sample measurements, and chamber cleaning. The process was 
divided into two stages: exhaled-breath sample collection and sample 
measurement. First, the participants’ exhaled breath was collected in a 
Tedlar bag. To adsorb the VOCs within the collected breath sample, a 
pump was used to draw the sample into a Tenax tube. The VOCs 
adsorbed in the Tenax tube were measured using the multimodal sensor 
system of the breath analyzer. The measurement system was automated 
and the control module regulated the valves, MFC, and heating lamp 
within the breath analyzer. The total breath data collection process took 
40 min, which included the stabilization and measurement processes. 
Before measuring the exhaled breath sample, the gas-sensor chamber 
was stabilized in a nitrogen atmosphere for 15 min (blue dotted line). 
Then, the gas adsorbed in the Tenax tube was desorbed by heating it to 
300◦C, and measured over 25 min (green dotted line). The sensor 
response data can be viewed in real-time on a monitor and automatically 
saved on a personal computer. 

3.2. Sensor characteristics of exhaled breath samples 

Prior to deep learning-based classification, we analyzed the acquired 
sensor response data from healthy individuals and lung cancer patients.  
Fig. 4 shows the response of the gas sensor array to the collected exhaled 
breath. The graphs show the responses of the 19 gas sensors, excluding 
the TGS3870 gas sensor, owing to its relatively unstable response data. 

Fig. 3. Description of the breath analyzer with multimodal sensor array and its operation. (a) Real images of the breath analyzer and its inner systems. (b) Diagram of 
operation process of the breath analyzer. 
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The detailed labels of the 19 gas sensors are listed in Table S3. Each 
sensor exhibited different sensitivities and response times. Specific 
sensors (i.e., SMO #2, PID + EC #5, and PID + EC #10) showed a higher 
response to the exhaled breath of a patient with lung cancer. The SMO 
sensors exhibited a peak at approximately 700 s after the introduction of 
the exhaled breath, whereas the PID and EC sensors showed a peak at 
approximately 600 s. Differences in response and response times 

occurred because each gas sensor reacted differently to various VOCs, 
which they are specifically designed to detect. This diversity in sensor 
reactions enhances the availability of information for lung cancer 
diagnosis. 

Fig. 4. Response of the SMO sensors to the exhaled breath from (a) a healthy control and (b) a lung cancer patient. Response of the PID and EC sensors to the exhaled 
breath from (c) a healthy control and (d) a lung cancer patient. 

Fig. 5. Structure of breath analyzer and convolutional neural network (CNN) algorithm for lung cancer diagnosis.  
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3.3. Breath analyzer performance in lung cancer diagnosis 

A 1D CNN was adopted to classify lung cancer patients using 
multimodal sensor array data. The model was built utilizing an open- 
source library (PyTorch, Meta, USA). The training and evaluation of 
1D CNN were carried out in a high-performance computing environment 
utilizing a GPU (RTX Titan, NVIDIA, USA). Fig. 5 shows the structure of 
a 1D CNN used in lung cancer diagnosis. To reduce bias during the 
training process, breath-response data were normalized to a range be-
tween 0 and 1 using the following equation, where Rmax is the maximum 
and Rmin is the minimum response:  

Rnor = (R-Rmin) / (Rmax-Rmin)                                                                  

The normalized response data were fed into the 1D CNN model in a 
19 × 2400 matrix, where 19 was the number of multimodal gas sensors 
and 2400 was the total measurement time during breath collection. A 1D 
CNN consists of a convolutional layer and a fully connected layer. In the 
convolutional layer, six kernels were used for the convolutional opera-
tion and were configured to move only along the time axis to construct a 
1D CNN model. The classification was then conducted using three fully 
connected layers. Each convolutional and fully connected layer used a 
rectified linear unit (Leaky-Relu) as the activation function and batch 
normalization layer. The last layer outputs two nodes with the lung 

cancer diagnosis results. This layer employed the softmax function as its 
activation function to calculate the probability of being a patient with 
lung cancer. 

In some cases, multiple breath samples were obtained from lung 
cancer patients, resulting in 181 breath samples, including 74 and 107 
breath samples from healthy controls and lung cancer patients, respec-
tively, which were used as input data for deep learning. The datasets 
were randomly divided into the following two groups: 80% and 20% of 
the data were used for training and testing, respectively. The deep 
learning models were trained using the training dataset, and their per-
formance was evaluated using the test dataset. In this study, 5-fold cross- 
validation was applied to prevent overfitting, and the classification 
performances were averaged across the cross-validation folds. Table 2 
summarizes the classification results of the clinical breath samples 
collected using the 1D CNN breath analyzer model. When the entire 
dataset was evaluated by 5-fold cross-validation, it exhibited a sensi-
tivity of 98.9%, specificity of 96.2%, and AUC of 97.8%. These results 
demonstrate a remarkably high classification accuracy, validating the 
reliability of the 1D CNN model for lung cancer diagnosis. 

We conducted additional analysis for the classification of lung cancer 
stages. The lung cancer patient group was divided into early stages (I+II) 
and advanced stages (III+IV) and applied a 1D CNN model for classifi-
cation. The classification results for early-stage and advanced-stage lung 

Table 2 
Key parameters of breath analyzer using 5-fold cross-validation of 1D-CNN for all breath samples.    

Pathology       
HC (negative) LC (positive) Total Sensitivity 

(95% CI) 
Specificity 
(95% CI) 

AUC 
(95% CI) 

Breath analyzer HC (negative) 71.2 1.2 72.4 98.9% 
(98.2%~ 
99.6%) 

96.2% 
(95.2%~ 
97.2%) 

97.8% 
(97.3%~ 
98.3%)  

LC (positive) 2.8 105.8 108.6     
Total 74 107 181     

Fig. 6. Lung cancer diagnosis results with different sensor array data. (a) SMO gas sensor array, and (b) multimodal sensor array.  
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Fig. 7. Comparison of classification performance in different deep learning models (MLP, RNN, and CNN). (a) Overall accuracy, (b) sensitivity, (c) specificity of 
training, validation, and test datasets from three different deep learning algorithms. (d) Receiver operating characteristics (ROC) curves and AUC values of the test 
datasets. All values are the averages of the results from 5-fold cross-validation. 

Table 3 
Comparison of the lung cancer diagnosis results between previous studies using breath sensor system and this study.  

Ref Number of breath samples Sensor array type Classification 
algorithm 

Accuracy Sensitivity Specificity 

Chang et al. [5] 85 breath samples 
(48 HC + 37 LC) 

7 SMO gas sensor MLP 75.0  79.0  72.0 

Goor et al. [22] 46 breath samples (107 HC +
60 LC) 

Aeonoses (3 SMO gas sensor) ANN 86  88  86 

Gasparri et al.  
[19] 

146 breath samples 
(76 HC + 70 LC) 

8 quartz microbalance (QMB) PLS-DA -  81  91 

Tirzite et al. [37] 244 breath samples 
(79 HC + 165 LC) 

Cyranose 320 (32 polymer carbon black composite gas 
sensor) 

SVM -  98.8  81.0 

Shlomi et al.  
[23] 

46 breath samples 
(16 HC + 30 LC) 

Multimodal gas sensor 
(26 gold nanoparticle + 8 SWCNT/PAH + 6 SWNCT/ 
HBC sensor) 

DFA 87.0  75.0  93.3 

Li et al. [24] 52 breath samples 
(28 HC + 24 LC) 

Multimodal gas sensor 
(8 SMO + 1 catalytic combustion +
1 hot-wire + 4 EC gas sensor) 

LDA-Fuzzy-5-NN 91.6  91.6  91.7 

Liu et al. [25] 82 breath samples 
(36 HC + 46 LC) 

Multimodal gas sensor 
(12 SMO + 1 hot-wire + 1 solid electrolyte + 5 EC gas 
sensor) 

SVM + SGL 94.3  97.8  90.2 

Chen et al. [26] 235 breath samples 
(134 HC + 101 LC) 

Multimodal gas sensor 
(2 EC + 1 hot-wire + 1 catalytic combustion + 7 SMO 
gas sensor) 

KPC + XGBoost 93.6  95.6  91.1 

This work 181 breath samples 
(74 HC + 107 LC) 

Multimodal gas sensor 
(10 SMO + 1 PID + 9 EC gas sensor) 

1D CNN 97.8  98.9  96.2  

B. Lee et al.                                                                                                                                                                                                                                      



Sensors and Actuators: B. Chemical 409 (2024) 135578

9

cancer are presented in Table S4. In this experiment, each patient 
contributed only one breath sample, with 63 breath samples for early- 
stage and 27 samples for advanced-stage. The classification results are 
presented in Table S4. Early-stage and advanced-stage lung cancer pa-
tients were distinguished with an accuracy of 80.9%. 

Fig. 6 shows the classification performance of the model with 
changes in the dataset. Datasets using only the SMO gas sensor array and 
those using all the gas sensor arrays (SMO, EC, and PID) were used to 
train separate 1D CNN models. When using only SMO gas sensor data, 
the model achieved an accuracy of 96.3% during training and 85.1% 
during testing. However, it exhibits an accuracy of 99.2% during 
training and 92.3% during testing when the entire sensor data was used. 
In particular, the specificity of the training dataset was significantly 
improved, leading to an overall improvement in the classification per-
formance of the test set. These results validate that using several patterns 
obtained from multimodal sensors as dataset achieves a higher classifi-
cation accuracy than using patterns obtained from a single sensor type. 

Fig. 7 shows the classification performance of the different deep 
learning algorithms. For comparison, we selected the three most 
commonly used deep-learning algorithms: the MLP, RNN, and CNN. The 
hyperparameters of the three algorithms were optimized to achieve the 
best classification performance. Fig. 7(a)–(c) show the accuracy, sensi-
tivity, and specificity of the training, test, and all datasets, respectively, 
for the three deep learning algorithms. All three algorithms exhibited 
high accuracy with the training dataset; however, the MLP and RNN 
exhibited relatively lower accuracy with the test dataset. The MLP 
model had a lower overall classification accuracy compared to other 
models, while the RNN model exhibited overfitting tendencies towards 
lung cancer patients. The 1D CNN model exhibited the most similar 
accuracy, sensitivity, and specificity between the training and test 
datasets, indicating that it was the most reliable algorithm. Next, we 
analyzed the performance of the three deep learning algorithms using 
ROC curves and their AUC values. The CNN model had the highest AUC 
value (92.7%), followed by the RNN (87.0%) and MLP (81.9%). 

Table 3 shows the breath analyzers and their classification perfor-
mances in previous studies and this study. Conventional studies utilizing 
single-type sensor arrays for lung cancer diagnosis have shown a rela-
tively lower classification performance. Recent studies employing 
multimodal sensor systems have demonstrated improved accuracy using 
data from various types of gas sensors. Previous studies utilized feature 
extraction methods for data preprocessing [13,14,26], whereas in this 
study, the use of the 1D CNN model allowed for the omission of such a 
feature extraction process. Furthermore, we achieved an accuracy of 
97.8%, sensitivity of 98.9%, and specificity of 96.2% for lung cancer 
diagnosis. Compared to other breath sensor systems, our breath analyzer 
demonstrated a significant capability to effectively distinguish between 
lung cancer patients and healthy individuals. 

4. Conclusions 

We fabricated a breath analyzer with a multimodal gas sensor array 
and analyzed it using a deep learning algorithm for the early diagnosis of 
lung cancer. The breath analyzer consisted of three types of gas sensor 
arrays and highly automated systems including a flow control module, 
heating lamp, MFC, and valves. A multimodal sensor system composed 
of SMO, EC, and PID gas sensors can capture various exhaled breath 
patterns, which are recognized using a 1D CNN-based classification 
model. Using the breath analyzer, we collected 181 breath samples (74 
healthy controls and 107 lung cancer patients) and successfully distin-
guished between the two groups with a high accuracy of 97.8% using a 
1D CNN algorithm. Furthermore, the validity of the multimodal sensor 
array and 1D CNN model used in this study was confirmed by comparing 
its classification performance with that of single-sensor system data and 
other deep-learning algorithms, including MLP and RNN. The classifi-
cation performance based on the multimodal sensor system and 1D CNN 
exhibited the highest AUC value of 92.7%. These results suggest that our 

breath analyzer combined with a deep-learning algorithm can be uti-
lized as a fast and accurate diagnostic device for lung cancer in clinical 
settings. 
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