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THE BIGGER PICTURE With the advent of the IoT era, in-sensor computing, which can perform both
sensing and local data processing in a sensor, becomes increasingly important because it can reduce po-
wer consumption and footprint area. Herein, an olfactory module has been developed to sense and distin-
guish different gases. The design is composed of two sensory neurons and four synapses for neuromorphic
hardware with a spiking neural network that can function without the direct engagement of an external pro-
cessor. Each sensory neuron combines a sensor and a neuron, which is advantageous for further reducing
power consumption due to its inherent two-in-one nature and spiking behavior. The configuration of a sin-
gle-layer perceptron (SLP) in this work can be extended to that of a multi-layer perceptron (MLP) for clas-
sifying a more diverse gas mixture with the aid of silicon microfabrication, which provides large-scale inte-
gration with high throughput and low cost.
SUMMARY
We present a neuromorphic sensory module for gas detection using a two-in-one typed olfactory neuron for
in-sensor computing. The module integrates a sensor for gas detection and a neuron for generating spike
signals and delivering them into the post-synapse. The sensing ability is enabled by catalytic metal particles
on a silicon nanowire field-effect transistor (Si-NW FET), while the neuronal ability is also realized by the Si-
NW FET itself, which encodes spike signals for a spiking neural network (SNN). By mounting palladium (Pd)
and platinum (Pt) nanoparticles on the Si-NW FET, we demonstrate themodule to classify H2 and NH3 using a
single-layer perceptron (SLP) with the sensory neurons and FET-based synapses. Power demand and
manufacturing cost efficiency are important considerations in mobile applications and edge computing in
the Internet-of-Things era. This in-sensor module-based SNN hardware provides a cost-effective solution
that is inherently more power and form-factor efficient over existing designs.
INTRODUCTION

Gas sensors are widely utilized for industrial safety, healthcare,

food analysis, and national security.1–5 For many applications,

small, portable gas sensors are preferred, especially given the

rising interest and investment in the Internet of Things (IoT).6,7

As a good gas sensor, various sensor metrics, such as sensitivity

to detect a small amount of gas, selectivity to identify a specific

gas, and reliability to reproduce the same response for long-term

use, should be ensured to be as high as possible.8–10 In partic-

ular, selectivity with low-power consumption as well as a fast

response time is critical to distinguish various gases. There
have been many attempts to classify different gases using a

sensor array, such as in the form of an electronic nose (e-nose)

that mimics a biological nose.11–15 Although there have been

numerous gas sensors developed to identify specific gases us-

ing dedicated sensor materials, a considerable amount of this

research relies on post-data processing, such as a deep neural

network (DNN), which limits their functionalities and efficiencies

because of the demand for processing power and the subse-

quent energy demand.16

There are three types of design architectures for sensors:

conventional computing, near-sensing computing, and in-

sensor computing.17 Conventional computing is composed of
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Figure 1. In-sensor computing architecture based on a spiking neural network (SNN) with the proposed Si-NW FET enclosing catalytic metal

particles

(A) Block diagram of the sensory computing architecture for gas identification. The conventional sensory computing architecture has a bottleneck arising from the

von-Neumann architecture. The near-sensor computing architecture requires an additional process for the interconnection between the sensing units and the

processing units. The disadvantages of the high processing cost and energy consumption can be resolved using the in-sensor computing architecture.

(B) Schematic of different catalytic metal-particle-embedded Si-NW FETs for the in-sensor computing architecture. A Si-NW FET generates spike signals as an

artificial sensory neuron for the SNN, while the catalytic metal particles on it respond to a specific gas.
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a multiple-sensor array, an analog-to-digital converter (ADC),

memory, and a centralized processor unit to perform heavy com-

putations. Near-sensing computing is comprised of a multiple-

sensor array and semi-decentralized front-end processing units

to perform intermediate computations. Unlike the other two, in-

sensor computing uses a multi-sensor array that encloses de-

centralized processing cores to perform computations in the

form of a single unit. Therefore, in terms of miniaturization and

power efficiency, there is an inherent advantage for the in-sensor

computing approach over the other two architectures.

In conventional computing architecture, power consumption

is a serious concern due to the use of an ADC. Additionally, extra

power is consumed during DNN-based computation when pro-

cessing digital signals from the ADC in a processing unit, tempo-

rarily storing them in a memory unit, and reloading them back

into the processing unit for subsequent computation. This serial

processing is inevitable in the vonNeumann computing architec-

ture. Consequently, the conventional computing architecture

consumes a significant amount of power owing to repeated

data processing and transferring (see Figure 1A). This is undesir-

able for IoT devices, which have an emphasis on low power con-
2 Device 1, 100063, September 22, 2023
sumption and small size. Unlike the conventional computing ar-

chitecture, the near-sensor or in-sensor computing architecture

adopts a spiking neural network (SNN) that works bymimicking a

biological sensory system and overcomes the above issues

related to DNN-based computations, as the architecture does

not require heavy post-processing units (see Figure 1A).

SNNs can be built using multi-layer perceptron (MLP), which

consists of an artificial neuron and a synapse. The neurons pro-

duce spikes as output signals, while the synapses determine the

connectivitybetweenneuron layers.Owing to their lowpowercon-

sumption and reduced footprint, the sensory architecture with

SNNs is advantageous for mobile and IoT sensors.18–20 However,

previous studies that implemented the SNN architecture had an

unresolved limitation because the sensing units and spiking neu-

rons were still separate.21,22 Additional manufacturing processes,

such as packaging or wire bonding, are required to connect the

sensing units and spiking neurons, but they can increase power

consumption, processing time delay, and manufacturing cost.

On the other hand, the metal-oxide-semiconductor field-effect

transistor (MOSFET), a key element of complementary MOS

(CMOS) technology, has advanced microelectronics and led to



Figure 2. Measured electrical characteristics from the fabricated Si-NW FET with the corresponding symbolic representation and SEM

photograph before embedding catalytic metal

(A) Schematic of the Si-NW FET and its SEM image.

(B) Symbolic representation of the Si-NW FET. Vout with a wedge shape was produced from D when Iin was applied to D under the condition of a VG value smaller

than VT.

(C) Wedge-shaped spiking characteristic (Vout-time) of the Si-NW FET, showing the integrate-and-fire behavior of the neuron.

(D) ID-VD characteristics of the Si-NW FET. An abrupt increase of ID occurs when VD reaches Vlatch due to the single-transistor latch (STL), which converts a high

resistance state (HRS) to a low resistance state (LRS). Ilatch flows at Vlatch.
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revolutionary changes in information and communication technol-

ogy. If sensor technology adopts and actively utilizes CMOS tech-

nology, it should be straightforward to enable mass production

due to the well-established commercial CMOS technology.

Furthermore, it is highly desirable for a sensor to directly produce

an electrical signal that responds to non-electrical signals from

introduced analytes, without the aid of a transducer or an ADC. If

sensor technology can ride the wave of this technology trend, a

single MOSFET without the need for a transducer or an ADC

mustbemodified toactasbothasensorandaspikingneuron, rep-

resenting a new frontier that has not been adequately explored

thus far.

In this work, we demonstrate an olfactory sensory neuron that

can detect several different gases using an in-sensor computing

architecture, going beyond our previous work with the near-

sensor computing architecture.21 This sensory neuron has a

two-in-one structure and acts as both a sensor and a neuron,

as shown in Figure 1B. To produce spiking signals for a neuronal

function, we used a silicon nanowire MOSFET (Si-NW FET),

which is similar to a fin-shaped FET (FinFET). Unlike a conven-

tional FinFET, where a folded gate (G) wraps two sidewalls and
the top of a protruding fin-shaped Si-NW, the new design ex-

poses the top of the Si-NW by separating the folded G using

chemical mechanical polishing (CMP), as shown in Figure 2A.

This Si-NW neuron is composed of a heavily doped n+ source

(S), a moderately doped p-type body, and a heavily doped n+

drain (D) along the channel direction. To detect a gas, two

different catalytic metal nanoparticles of palladium (Pd) and

platinum (Pt) reacting with two gases are formed on the exposed

Si-NW. By combining these two sensory neurons and four syn-

apses made of another MOSFET for a single-layer perceptron

(SLP) configuration, the final module can quantitatively detect

the presence of two gases: hydrogen (H2) and ammonia (NH3).

As a bio-mimicry e-nose, this array, configured with 100%

MOSFETs, can be developed further for a breath monitoring

system to diagnose diseases.23,24

RESULTS

Structure of the Si-NW FET
The Si-NW FETs were fabricated on a p-type 8-inch silicon-on-

insulator (SOI) wafer with a crystal orientation of (100), a top
Device 1, 100063, September 22, 2023 3
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silicon thickness of 55 nm (SOITEC), and a buried oxide (BOX)

thickness of 145 nm. The folded G was separated, meaning

that the p-type body was exposed with the n+ S/D, which were

not covered by the G. The nominal dimensions of the Si-NW

FETs are an NW width (WSi-NW) of 250 nm and a G length (LG)

of 300 nm, as shown in the scanning electron microscopy

(SEM) image in Figure 2A. Pd and Pt nanoparticles were

physically deposited across the Si-NW from n+ S via the

p-type body to the n+ D. It should be noted that only metal

nanoparticles located on the p-type body function electrically,

and those situated on the n+ S/D electrode do not have electrical

performance (additional fabrication details are included in

Figure S1).

Characteristics of Si-NW FET for neuronal behaviors
The proposed Si-NW FET for a sensory neuron has two modes.

In the first, it functions as a typical MOSFET that incorporates

voltage input and current output. The second mode is an oscil-

lating neuron mode with current input and voltage output, as de-

picted in Figure 2B. When constant current (Iin) is fed to D with

properly biased S and G, the sensory neuron produces a

wedge-shaped oscillating output voltage (Vout) of a spiking

signal, as shown in Figure 2C. It should be noted that Vout directly

comes out from the Si-NW sensory neuron without the aid of a

transducer or any external converting circuits. The spiking (or

firing of the signal) caused by a single-transistor latch (STL) as

shown in Figure 2D. An STL, which was frequently observed in

a floating body (FB) FET, occurs when the D voltage (VD) ap-

proaches the latch voltage (Vlatch), as shown in Figure 2D.25–28

In the wedge-shaped oscillating Vout in Figures 2C and 2A, a lin-

early increasing zone is dominated by a charging process to the

FB, and an abruptly decreasing zone is governed by a discharg-

ing process from the FB (for more information on the iterative

wedge-shaped oscillating Vout, one may refer to the energy

band diagrams in Figure S2).

When Iin is fed to D of the Si-NW FET, the following sequential

process occurs: (1) the built-in potential in D (Vbi,D) is enlarged; (2)

impact ionization to generate electron and hole pairs is triggered

due to injected electrons from S with the increased Vbi,D; (3) the

created holes accumulate in the p-type FB; (4) the built-in poten-

tial in S (Vbi,S) is accordingly lowered; (5) more electrons are in-

jected into the p-type FB; (6) the impact ionization is boosted

and the additionally generated holes pile in the p-type FB as a

gradual charging (integrating) process, with a linear incremental

slope; and (7) Vbi,S is reduced further and numerous electrons are

injected to the p-type FB, with the Si-NW becoming more

conductive. During this step, Vbi,D is abruptly reduced by the in-

jected electrons, and the Vout is emitted from D with a wedge

shape as an abrupt discharging (firing) process. The accumu-

lated holes in the FB escape toward S, and the output current

(Iout) flows out from S as a spike. Finally, (8) Vbi,S and Vbi,D tend

toward their initial resting states and the Si-NW becomes very

resistive in an automatic resetting process. The entire sequential

process from (1) to (8) creates a positive feedback loop because

the volume of the channel in the Si-NW FET where the generated

holes are accumulated is finite, while carriers are continuously

supplied to the Si-NW FET in the form of Iin. Here, step (7), which

causes ID to abruptly increase to Ilatch in Figure 2D, is the STL.
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Figure 2D shows the ID-VD characteristics of the Si-NW FET.

The two separate G voltages (VG) were both set to �1 V to turn

off the Si-NW FET before the STL. This was done because sus-

taining an off state is advantageous for accumulating holes in the

FB. When VD reaches Vlatch, ID increases abruptly to the latch

current (Ilatch) due to the STL. A typical characteristic of an artifi-

cial neuron is its leaky integrate-and-fire (LIF) operation, similar

to that of a biological neuron. The charging process corresponds

to ‘‘integrate,’’ while the abrupt discharging by the STL

corresponds to ‘‘fire.’’ The ‘‘leaky’’ characteristic in a MOSFET

with an FB, which is not used in this work, was demonstrated

in our previous works.26 The Vout-time (t) characteristic in Fig-

ure 2C shows the neuronal LIF operation, with the linear slope

in the incremental Vout proportional to Iin at a fixed value of

spiking frequency (f). This f is modeled with the following

equation:

f =
Iin

Cpar$
�
VT;firing � Vbottom

� (Equation 1)

where VT,firing is the peak voltage at the moment of firing, Vbottom

is the base voltage prior to charging that corresponds to the

resting voltage, and Cpar represents all capacitances involved

in the measurements. These are the FB capacitance itself, the

probing pad capacitance, and the equipment capacitance,

including the cable capacitance.29,30

Once Iin and Cpar are fixed, f increases as VT, firing decreases

and as Vbottom increases. In other words, the proposed sensory

neuron can mimic a human olfactory neuron by adjusting f with

VT,firing and Vbottom when a gas is introduced. This iterative inte-

grating and firing operation generates an oscillatory Vout as

long as Iin is supplied to the Si-NW FET, which is equivalent to

a typical spiking characteristic of a biological neuron. Here,

VT,firing corresponds to Vlatch at the moment when the integrated

charges flow out toward S under neuronal firing.28 Additionally,

Vbottom, which is determined by Ilatch, corresponds to the resting

voltage.
Measurement setup for gas detection
A hermetic gas chamber enclosing an electrical probing system

was used to characterize the gas response directly. The electrical

probing system used in this case was connected to a semicon-

ductor parameter analyzer (model 4156C, Keysight) located

outside the chamber. To control the gas concentrations of each

of the gases, individual mass flow controllers (MFCs) regulated

by Labview (National Instruments, Austin, TX, USA) software

were used. Both targeted gases of H2 and NH3 (i.e., reacting

gases) were sufficiently diluted with nitrogen (N2) for safety. As a

reference, the dilution of H2 was 20,000 ppm in N2, and that of

NH3 was 100 ppm in N2. The reacting gases, H2 or NH3, were in-

jected into the hermetic reacting chamber with the dilution gas,

N2, while maintaining a total flow rate of 400 sccm. A concentra-

tion of reacting gas was modulated by changing the ratio of

each flow rate within total flow rate of 400 sccm. In addition, oxy-

gen gas (O2) flowing at 100 sccmwas injected into the chamber to

mimic an air environment composed of 80%N2 and 20%O2. The

overall measurement apparatus is shown in Figure S3.



Figure 3. Si-NW FET embedded with palladium nanoparticles (PdNPs) for detecting hydrogen (H2) gas

(A) Cross-sectional TEM image (left) and EDS mapping image (right) of the PdNP-embedded Si-NW.

(B) Detection mechanism of H2 by the PdNP-embedded Si-NW FET. H2 molecules are dissociated into H atoms, which diffuse through the Pd particles and then

create dipoles at the interface between the Pd and the top oxide on the Si-NW.

(C) ID-VG characteristics. Positive poles oriented toward Si-NW lower VT and accordingly raise ID in the presence of H2 gas.

(D) ID-VD characteristics. The positive poles pull down Vlatch due to the reduced VT with H2.

(E) Spiking characteristic (Vout-time). VT,firing (=Vtop) decreases and Vbottom increases with a high concentration of H2.

(F) The response (hf ) increases as the H2 concentration increases.
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Characteristics of PdNP-embedded Si-NW FET for
sensory neuron behaviors
Thermal oxide (SiO2) was grown to 3 nm on the top of the

exposed Si-NW before the formation of metal nanoparticles.

This insulative SiO2 prevents the metal nanoparticles from short-

ing electrically to the Si-NW channel. For the sensory neuron to

detect H2, catalytic Pd was physically deposited using an

electron-beam evaporator. When the Pd thickness is 1 nm on

the insulative SiO2, the Pd atoms agglomerate, resulting in the

formation of Pd nanoparticles (PdNPs) rather than a continuous

film due to the low surface energy of SiO2.
31,32 Figure 3A shows a

cross-sectional image taken by a transmission electron micro-

scope (TEM) along with the corresponding mapping image taken

via energy-dispersive spectroscopy (EDS). The PdNPs were well

formed on the top insulative oxide of the Si-NW FET.

Figure 3B illustrates the mechanism showing how the deco-

rated PdNPs on the Si-NW FET sense H2. When H2 is absorbed

at the surface of a PdNP, it dissociates into H. Then, the H dif-

fuses into PdNP. The absorbed H forms electric dipoles at the

interface between the Pd and SiO2 layers, with the positive

pole facing the underlying insulative SiO2 on the Si-NW FET.

As shown in Figure 3C, this positively aligned H dipole toward

SiO2 causes a negative shift of threshold voltage (VT).
31,33

Here, VT is used to discern whether an n-channel MOSFET

with a p-type body is on or off. This reduced VT causes more

electrons to be injected into the p-type body, triggers the impact
ionization to occur earlier, and eventually reduces Vlatch, as

shown in Figure 3D.34 As a result, Ilatch decreases in the presence

of hydrogen gas.

With regard to sensitivity, Figure 3E shows the neuronal

spiking operation of the sensory neuron with PdNPs for various

concentrations of H2. As explained above, more H2 lowers Vlatch

and Ilatch, which in turn lowers VT,firing due to reduced Vlatch and

raises Vbottom due to the reduced firing current. The tendency

of f to become higher with a reduced VT,firing and an increased

Vbottom was experimentally verified, as shown in Figure 3E, and

can be understood through Equation 1. Herein, the sensing

metric is defined as a response, hf = [(f - fair)/fair],100%, where

f is the spiking frequency with H2 and fair is that without H2, i.e.,

the spiking f with air. As shown in Figure 3F, hf increases linearly

with an increase in the H2 concentration. This linearity, which is

highly preferable to ensure a good sensor, is attractive for

extrapolation as well as interpolation to predict H2 concentra-

tions even when there are no matching data between hf and

the H2 concentration. A larger hf is advantageous for higher

sensitivity as a good biomimetic olfactory neuron.

In the proposed sensory neuron with PdNPs, hf can be

controlled by modulating VG.
34 Because the abovementioned

Vbi,S is reduced to the increased VG, more electrons are injected

from S to the p-type body due to this enlarged VG, with f then

tending to increase even with a fixed H2 concentration (e.g., Fig-

ure S4 shows that hf becomes larger with an increase in VG).
Device 1, 100063, September 22, 2023 5



Figure 4. Si-NW FET embedded with PtNPs for sensing ammonia (NH3) gas

(A) Cross-sectional TEM image (left) and EDS mapping image (right) of the PtNP-embedded Si-NW.

(B) Detection mechanism of NH3 by the PtNP-embedded Si-NW FET. NH3 molecules are dissociated into N2 and H2, and H2 is then subsequently dissociated to

H, which diffuses into the PtNP.

(C) ID-VG characteristics. Positive poles oriented toward Si-NW lower VT and accordingly raise ID in the presence of NH3 gas.

(D) ID-VD characteristics. The positive poles pull down Vlatch due to the reduced VT with NH3.

(E) Spiking characteristic (Vout-time). VT,firing (=Vtop) decreases and Vbottom increases with a high concentration of NH3.

(F) The response (hf ) increases as the NH3 concentration increases.
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Thereby, the sensory neuron with PdNPs senses H2 gas from

tens of ppm to 10,000 ppm by modulating the value of VG for

tunable sensitivity. Additionally, individual VG control for each

sensory neuron is useful to reduce the device-to-device fluctua-

tion of hf (see Figure S5). Conversely, the absence of a G is

preferred to simplify metal interconnections in SNN if possible.

When the body doping concentration is high enough in a Si-

NW FET, keeping the channel in an off state becomes easier

even without the presence of VG, similar to an ungated or chem-

ically gated FET.25,35

In terms of selectivity, Pd is known to exhibit high selectivity in

detecting H2 gas amid many other gases (see Figure S6 for hf
values for various types of gases).36,37 The sensory neuron fabri-

cated with PdNPs showed a high hf value for only H2 gas. Such

selectivity is crucial when constructing a multiplexing sensor

array expected to identify unknown gas mixtures.

Characteristics of PtNP-embedded Si-NW FET for
sensory neuron behaviors
To demonstrate the ability of the sensor to distinguish different

gases, NH3, which has a decomposability similar to H2, was

selected as the other gas for the experiment. NH3 was detected

by a sensory neuron deposited with PtNPs instead of PdNPs.

Akin to the fabrication procedure of the H2 sensory neuron with

PdNPs,Ptwitha thicknessof1nmwasdepositedonto the thermal

oxide covering the exposed Si-NW using an electron-beam evap-
6 Device 1, 100063, September 22, 2023
orator. Owing to the low surface energy of SiO2, Pt tends to show

island patterns instead of a continuous film. Figure 4A shows a

cross-sectional TEM image and a corresponding EDS mapping

image. NH3molecules decompose into N2 andH2when catalyzed

byPtNPs.ThedecomposedH2 readily dissociates intoHatomson

the PtNP surface and diffuses toward the oxide on the Si-NW.38,39

Similar to the H dipole in the H2 gas-sensing neuron with PdNPs,

the H dipole stemming from NH3 causes a negative shift of VT

and Vlatch, as shown in Figures 4C and 4D, respectively. Being

consistent with the H2 sensory neuron with PdNPs, the tendency

of f to increasewith a reduction ofVT,firing and an increase inVbottom

(see Equation 1) was observed in Figure 4E, due to the

lowered Vlatch and Ilatch. As a result, Figure 4F shows that hf in-

creases with an increase in the NH3 concentration. Similar to a

PdNP-embedded Si-NW FET for sensing H2, individually modu-

lating VG for each PtNP-embedded Si-NW FET for sensing NH3

is helpful in suppressing the device-to-device fluctuation of hf
(see Figure S7).

The sensory neuron with PtNPs also responds directly to

H2 gas because of the dissociation of H2 molecules into H

atoms on its surface (see Figure S8). Therefore, sensors using

Pt as a catalytic metal cannot easily classify H2 gas and NH3

gas due to their sensitivity to both gases. However, if the

PtNP sensory neuron works with the PdNP sensory neuron

to selectively detect H2 via SNN, H2 and NH3 gases can be

distinguished.



Figure 5. Gas classification with a catalytic

metal-embedded Si-NW FET

(A) Configuration of a single-layer perceptron (SLP)

for the classification of two gases. The input nodes

corresponded to the catalytic metal-embedded Si-

NW FET. The output layer has two nodes repre-

senting H2 and NH3.

(B) Circuit scheme for the gas-classification mod-

ule. Spike signals are transferred to the gate

electrode of the synapses, which are MOSFET-

based flash memory devices. The VT of the syn-

apse represents the synaptic weight.

(C) Synapse current measured at output node A

(Isyn,A) and output node B (Isyn,B). When H2 gas was

introduced, the spiking frequency of Isyn,A was

greater than Isyn,B. Otherwise, the frequency of

Isyn,B was greater than Isyn,A when NH3 gas was

introduced.
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Hardware implementation for gas classification
The process for producing the final data on the different gases is

achieved using specific neuromorphic hardware for in-sensor

computing using an SLP applied to an artificial neural network.

The SLP consists of two sensory neurons as an input node and

four synapses as an output node, as shown in Figure 5A. The

input layer is composed of two sensory neurons, one with

PdNPs and the other with PtNPs. As shown in Figure 5B, the

former sensory neuron is connected to two synapses with low

VT and high VT values. Like an artificial neuron, a synaptic device

is also based on aMOSFET, where a charge-trap layer is interca-

lated into theGdielectrics. This synapse has a non-volatilemem-

ory function and is trainable through strengthening or weakening

of the synaptic weight. Herein, the synaptic weight represents

the connection between the input layer and the output layer

and can be modulated by VT in the case of a charge-trap-based

flash memory device with a MOSFET structure.40

In this type of synapse, an increase in VT for the depression

operation is achieved by programming electrons to be trapped

in the charge-trap layer, while a decrease in VT for the potentia-

tion operation is realized by erasing electrons that are de-trap-

ped from the charge-trap layer (additional information regarding

a synapse with a charge-trap-based flash memory is provided in

Figure S9). This type of synapse, sometimes known by its abbre-

viation as SONOS, was fabricated on an SOI wafer like the sen-

sory neuron and utilizes G dielectrics with three layers: SiO2 as a

blocking oxide (O), Si3N4 as a charge-trap layer (N), and SiO2 as

a tunneling oxide (O), which are in turn sandwiched between a

poly-crystalline Si (S) G electrode and a single-crystalline Si

(S) channel in an S-O-N-O-S stack formation. It should be noted

that a sensory neuron and a synapse can be laterally co-inte-

grated on the same plane or monolithically and vertically inte-

grated on a different plane with the ‘‘synapse over neuron’’

structure.27

The output layer of SLP, consisting of four synapses, has two

nodes: related to H2 detection and relevant to NH3 sensing. The
sensory neuron with PdNPs has a strong

connection to the synapse with a low VT

at the output node but a weak connection
to the synapse with a high VT at the output node. Conversely, the

sensory neuron with PtNPs has a weak connection to the syn-

apse with a high VT at the output node but a strong connection

to the synapse with a low VT at the output node. It is well known

that a lower VT drives a higher ID. Therefore, a synapse with a

lower VT has a stronger connecting weight. Isyn,A with fA is pro-

duced from the output node, while Isyn,B with fB comes from

the output node. It is important to note that VG of the sensory

neuron with the PdNPs was 0 V and that with the PtNPs was

�1 V, as the sensitivity can be controlled by modulating VG

and because the sensory neuron with the PdNPs is more sensi-

tive to the H2 gas in the proposed neuromorphic hardware.When

H2 gas is introduced, fA is higher than fB, as shown in Figure 5C.

On the other hand, when NH3 gas is introduced, fB is higher than

fA, as shown in Figure 5D.

Although only two gases were classified using a very simple

neural network structure in this work, it is possible to distinguish

a more diverse gas mixture by adding a hidden layer in the form

of an MLP or by increasing the temperature of a catalytic metal-

embedded Si-NW FET through joule heating.41–43 However, this

expanded system will result in an exponential increase in the

number of synapses, imposing a serious overloadwith increased

power consumption on conventional von Neumann computing

with a DNN. In contrast to this, power consumption is not a prob-

lem due to the inherent nature of low power consumption in the

case of hardware-based SNN.

DISCUSSION

In this work, a two-in-one sensory neuron hybridizing a gas

sensor and an artificial neuron was demonstrated using an SNN

for in-sensor computing. Catalytic metal NPs deposited on the

sensory neuron acted as a sensing component. When the sen-

sory neuron decorated with metal NPs was exposed to a gas,

theVT shifted directlywithout the use of a transducer. ThisVT shift

in turn modulated an output spiking signal, which was then
Device 1, 100063, September 22, 2023 7
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directly delivered to thepost-synapsewithout theaidof acurrent-

to-voltage or voltage-to-current converter. Like a biological

neuron, the fabricated sensory neuron showed LIF behavior,

which is necessary for an SNN. The two-in-one sensory neuron

can simultaneously perform sensing and spike encoding, which

reduces its power requirements and hardware costs over other

architectures that require external components such as an

ADC, a processor, and memory units. Furthermore, certain

manufacturing processes such as packaging and wire bonding

are eliminated, meaning that the accompanying side effects

can be avoided. In terms of electricalmanipulation, the sensitivity

of the artificial sensory neuron is tunable by adjusting theVG.With

regard to chemical specificity, the selectivity of the artificial

sensory neuron is adjustable by changing the synaptic weight.

For multiplexing gas sensing, two types of gases (H2 and NH3)

were distinguished using an SNN configuration in the form of

SLP. The SNN consisted of two sensory neurons and four

synapses. One sensory neuron was decorated with PdNPs for

H2 sensing, and the other sensory neuron was decorated with

PtNPs for NH3 and H2 sensing. The sensory neurons and synap-

ses were similar to each other in their use of MOSFET, but

they were different because the neurons were decorated with

metal particles on the top channel of the MOSFET, whereas

the synapses harnessed a charge-trap layer in the G dielectrics.

The combined device, with the incorporation of in-sensor

computing, can quantitatively and selectively measure the con-

centrations of H2 and NH3 in the environment. The classification

ability can be further improved by replacing the SLP with the

MLP and creating a large array composed of a greater number

of different sensory neurons with various sensing materials that

react differently to specific gases. Due to the aforementioned

low power consumption and small footprint area, a sensory

neuron to realize in-sensor computing with the two-in-one struc-

ture is attractive for mobile and IoT devices. Thus, it can be used

for detecting spoiled food, diagnosing diseases through breath

tests, such as for lactose intolerance with H2 and for kidney fail-

ure with NH3, and improving safety in various environments by

detecting explosive H2 and harmful NH3 in factories.
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