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Deep-learning-based gas identification by time-
variant illumination of a single micro-LED-
embedded gas sensor
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Yong-Hoon Cho 2, Seung Chul Ha3, Kuk-Jin Yoon1✉ and Inkyu Park1✉

Abstract
Electronic nose (e-nose) technology for selectively identifying a target gas through chemoresistive sensors has gained
much attention for various applications, such as smart factory and personal health monitoring. To overcome the cross-
reactivity problem of chemoresistive sensors to various gas species, herein, we propose a novel sensing strategy based
on a single micro-LED (μLED)-embedded photoactivated (μLP) gas sensor, utilizing the time-variant illumination for
identifying the species and concentrations of various target gases. A fast-changing pseudorandom voltage input is
applied to the μLED to generate forced transient sensor responses. A deep neural network is employed to analyze the
obtained complex transient signals for gas detection and concentration estimation. The proposed sensor system
achieves high classification (~96.99%) and quantification (mean absolute percentage error ~ 31.99%) accuracies for
various toxic gases (methanol, ethanol, acetone, and nitrogen dioxide) with a single gas sensor consuming 0.53 mW.
The proposed method may significantly improve the efficiency of e-nose technology in terms of cost, space, and
power consumption.

Introduction
Advances in mobile gas monitoring technology have

resulted in many emerging applications, such as smart
factories, smart agriculture, personalized health-mon-
itoring, and internet-of-things (IoT) appliances. Che-
moresistive gas sensors are one of the most promising
components for the future gas monitoring systems
because of their high sensitivity, compact size, simple
measurement, and low cost1. Accordingly, semiconductor
metal oxides (SMOs)2–4, carbon nanomaterials (e.g., gra-
phene and carbon nanotubes)5–7, conductive polymers8,9,

and functionalized silicon10–12 have been thoroughly
studied as potential candidates for chemoresistive sensing
materials. Despite various attempts, chemoresistive gas
sensors have suffered from the selectivity problem
attributed to the nonspecific responses of those sensors to
most reactive gas species, thereby resulting in challenges
to accurately estimate the type and concentration of a
specific gas. Accordingly, numerous studies on specific
nanostructures/composites-based sensing materials and
surface modification with catalysts have been reported to
improve the selectivity of chemoresistive gas sen-
sors3,13–17. These sensing materials exhibit a higher
response to a specific target gas relative to the other
interfering gases. Additionally, gas-selective filters have
been introduced18–20. They are placed outside the sensor
package or directly coated on the sensing materials to
facilitate only the desired gas molecules to approach the
sensor. However, because these approaches cannot fun-
damentally eliminate the cross-reactivity of gas sensors to
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various gas species, their practical uses in gas identifica-
tion are limited.
Electronic nose (e-nose) technologies have emerged to

overcome these selectivity problems. General e-nose sys-
tems are composed of multiple gas sensor arrays, each
exhibiting a different reactivity to specific gases. Similar to
diverse olfactory cells and acceptors in an animal nose, gas
species can be identified by analyzing the patterns of the
multi-sensor signals21. To date, various e-nose systems,
such as arrays of commercial packaged gas sensors22 and
highly integrated micro/nano-sensors23–25, have been
introduced. In addition, applications of signal processing
and machine-learning (ML) algorithms, such as principal
component analysis (PCA)26–29, support vector machine
(SVM)24,25, Gaussian mixture model (GMM)30, k-nearest
neighbors (KNN)23, and neural-network-based ML algo-
rithms31–33, have been extensively studied in this field.
Nevertheless, e-noses using multi-sensors have critical
drawbacks: the cost, power consumption, and volume of
the entire system proportionally rise with the increase in
the number of used gas sensors.
In this study, we propose a novel gas-identification

strategy based on a single micro light-emitting diode
(μLED)-embedded photoactivated (μLP) gas sensor, uti-
lizing the time-variant illumination, coupled with a deep-
learning-based analysis. In our previous study, we devel-
oped ultra-low power μLP gas sensors and verified their
high gas-sensing performance under consistent illumina-
tion conditions34. Moreover, the excellent mechanical
stability and microsecond-level latency of the gallium
nitride (GaN)-based μLED facilitate rapid changes in the
light intensity. Under the changes in light intensity, che-
mical activations and deactivations are repeated on the
surface of the SMOs. The resulting temporal transient
signals can accordingly reflect specific patterns depending
on the different gas species owing to the differences in
their reaction kinetics. We demonstrate this concept
using various concentrations of multiple gas species
(methanol, ethanol, acetone and nitrogen dioxide), with
pseudorandom operation of the μLED. In addition, the
deep convolutional neural network (D-CNN) decodes the
complex frequency spectrogram of the transient sensor
signals and predicts the gas species as well as estimates
the concentrations. This dual-task performance of the
D-CNN facilitates successful real-time identification of
mono-gas environments and binary gas mixtures. Thus,
the proposed strategy is expected to facilitate efficiency in
terms of cost, space, and power consumption and is
applicable to the analysis of various gas environments.

Results
Description and characterization of the μLP gas sensor
The structure of the μLP gas sensor is illustrated in Fig.

1a. It has two p-n contact electrodes for applying forward

bias to the μLED and two interdigitated electrodes on the
surface of the device for measuring the conductance of
the SMO-sensing materials. The inset image in Fig. 1a
shows the cross-sectional structure of the sensor in detail.
Epi-layers of n-GaN, multi-quantum wells (MQWs), and
p-GaN are grown by a well-defined metal-organic che-
mical vapor deposition (MOCVD) process. The detailed
fabrication process is described in the Materials and
Methods and Fig. S1. The emission spectrum of the fab-
ricated μLED is set in the near ultraviolet (UV) light range
(λpeak= 395 nm and full width at half maximum
(FWHM)= 14 nm) where Al(In)GaN LEDs are known to
have a high energy efficiency35. Furthermore, the extre-
mely small gap (the thickness of the SiO2 insulation layer
is approximately 1 µm) between the light source and the
sensing material minimizes the energy loss. The light-
emitting performance of the fabricated μLED device is
provided in Fig. S2. The nano-porous indium oxide
(In2O3) sensing film is deposited on the surface electrodes
through the glancing angle deposition (GLAD) technique.
GLAD is a technique in which the direction of vapor flux
impinging on a substrate is inclined, and the substrate
rotates simultaneously during the deposition36. By the
nanoscale shadowing effect, porous, columnar, and
granular metal oxide films can be formed. After the
GLAD process, gold nanoparticles (NPs) were coated on
the In2O3 surface by e-beam evaporation. When the light
is illuminated on the plasmonic metal NPs, localized
surface plasmon resonance (LSPR) occurs and hot elec-
trons are generated. These electrons can be transferred
from metal NPs to metal oxide, improving the gas sen-
sitivity, response and recovery speed. Figure 1b–e show
the results of the device fabrication. Figure 1b, c shows the
optical microscopic images of the fabricated sensor device
and the light-emitting state of the sensor under a forward
bias of 2.9 V, respectively. The emission area is designed
to be 50 × 50 μm2. Figure 1d, e demonstrates the trans-
mission electron microscope (TEM) image of the cross-
section-view and scanning electron microscopy (SEM)
image of the top-view of the GLAD In2O3 sensing
material coated with gold NPs, respectively. The nano-
porous sensing films were well-formulated with a thick-
ness of approximately 268 nm and a porosity of approxi-
mately 59.9% ((top-view area of voids)/(total top-view
area) × 100 (%) from Fig. 1e, assuming that the film has a
prismatic columnar structure), while the mean diameter
of the nanocolumns is 30.4 nm (Fig. S3). The average
diameter of the e-beam coated gold NPs was 10 nm. As
shown in Fig. S4, higher porosity film can be obtained at
higher tilting angles (θ= 85°) due to the greater nanoscale
shadowing effect, and this exhibits the highest and fastest
sensor responses over most concentration ranges.
Therefore, the condition for maximizing the porosity was
selected so that the sensor signal can make significant
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dynamic changes while changing the light intensity. The
electrical resistance of In2O3, an n-type semiconductor,
decreases when it comes in contact with reducing gases,
such as methanol (CH3OH), ethanol (C2H5OH), and
acetone (CH3COCH3), owing to the reduced density of
the adsorbed oxygen ions and the thinned surface
electron-depletion layer. In contrast, the electrical resis-
tance of In2O3 increases when exposed to oxidizing gases,
such as nitrogen dioxide (NO2). Here, the consistent
photoactivation generates reactive hot electrons and
promotes surface redox reactions of gas analytes. After a
sufficient interval, upon introduction to a gas environ-
ment, the sensor reaches an equilibrium state, maintain-
ing a steady sensor signal. On the other hand, Fig. 1f.
illustrates a novel technique using random pulsed illu-
mination of μLED. When the μLED is turned on, elec-
trical conductivity is raised by hot electron generation,
and desorption of adsorbed oxygen on the surface of
metal oxide is promoted, increasing the reaction site with
the target gas. The higher the light intensity, the more
active this reaction is, and in the presence of each target
gas, a different and unique transient sensor signal can be
included in the sensor’s transient signal. Therefore, by
using pulsed illumination instead of steady illumination,
more diverse data can be obtained within the same time
period, enabling selective gas detection with only a single
sensor. The steady-state responses (ΔR/R0) of the fabri-
cated sensor to the above-mentioned reducing gases are
summarized in Fig. 1g. These response curves were
acquired under consistent light illumination by the
embedded μLED (VLED= 3V). In Fig. 1g, the response
span for the tested gases overlaps in specific concentra-
tion ranges of each gas. Figure 1h shows the cross-
sensitivity of the sensor to methanol (10 ppm), ethanol (10
ppm), and acetone (200 ppm) under consistent illumi-
nation (VLED= 3V) more clearly. In conclusion, it is dif-
ficult to identify the specific gas species and
concentrations using only a single sensor signal in an
unknown gas environment. To resolve this problem, our
novel strategy focuses on the different reaction kinetics of
different gases. Generally, the reaction speed of gases at
the surface of SMOs can be increased by supplying
external activation energy (heat or photon energy). Here,

the reaction kinetics are also influenced by the intrinsic
chemical/physical characteristics of specific gas mole-
cules, such as the adsorption energy, dissociation energy,
and surface diffusivity. By periodically changing the light
intensity and modulating the μLED pulses, the sensor can
always be in a non-steady state. While the steady-state
responses were similar, as shown in Fig. 1h, the temporal
transient responses differed depending on the different
tested gases, as shown in Fig. 1i. Therefore, this approach
provides an opportunity to identify gas species and esti-
mate gas concentrations by monitoring the distinctive
temporal patterns of a single sensor signal.

Pseudorandom operation results of μLED
Figure 2a shows the schematic process-flow of the

sensor operation. As shown in Fig. 2a-(i), a pseudorandom
input is applied to the embedded μLED. The pseudoran-
dom input is composed of randomly shuffled voltages
with five different levels and uses a fixed time interval for
each level. A similar operational concept was first
attempted by a previous study that utilized microheater-
based SMO gas sensors37,38. The pseudorandom input is
more advantageous to the generation of transient sensor
signals than monotonous wave inputs such as sine, tri-
angular, and square waves (Refer to Fig. S5 illustrating
various input waveforms and their frequency spectra).
The pseudorandom signals contain all frequency com-
ponents, similar to a white noise; investigating the most
advantageous operating frequency for gas discrimination
in advance is not generally required. However, when
applying such pseudorandom operation to microheater-
based gas sensors, the modulation of temperature should
be restricted to a small range, and the transition of tem-
perature should be adequately slow to avoid a thermal
shock and mechanical fracture of microheaters. In con-
trast, the excellent durability of GaN-based μLED facil-
itates more dramatic, wide-range alternation of light
intensity and reliable long-term use in practical fields.
Figure 2a-(ii) shows the time-domain transient sensor
response (particularly, sensor current) under the pseu-
dorandom operation of μLED. During the increase in the
light intensity, the sensor current also increases owing to
the generation of photo-carriers, while the surface of

(see figure on previous page)
Fig. 1 Description and characterization of sensor device. a Schematic illustration of a micro-LED (μLED)-embedded photoactivated (μLP) gas
sensor device. The inset illustrates a cross-sectional structure of the sensor device. b, c Optical microscopic images of the fabricated sensor and near
ultraviolet light-emitting μLED (λpeak= 395 nm) with forward bias = 2.9 V. d, e Transmission electron microscopy and scanning electron microscopy
images of cross-sectional and top views of gold NPs coated porous, columnar indium oxide (In2O3) sensing film deposited by a glancing angle
deposition (GLAD) method. f Schematic illustration explaining the mechanism and advantages of pulsed illumination operation. L2 has a stronger
light intensity than L1. By using random pulsed illumination instead of the steady illumination of μLEDs, more unique response data can be
generated from each target gas within the same amount of time, enabling selective gas discrimination with a single sensor. g Calibration curves of
the μLP gas sensor with representative reducing gases such as methanol (CH3OH), ethanol (C2H5OH), acetone (CH3COCH3), and nitrogen dioxide
(NO2) under continuous illumination of μLED (forward bias = 3 V). h Dynamic sensor responses (R and ΔR/R0) to 10-ppm methanol, 10-ppm ethanol,
200-ppm acetone, and 0.5-ppm NO2 under continuously illuminating state and i on-off alternating state of μLED
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SMO is chemically activated. In contrast, the sensor
current drops and the activated surface partially degen-
erates when the light intensity decreases. For both acti-
vation and deactivation steps, both the quick physical

response (photo-current) and the relatively slow chemical
response (gas reaction at the surface) of SMO contribute
to the transient sensor signal. In Fig. 2a-(iii), the transient
sensor signal is analyzed by transforming the sensor signal
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Fig. 2 Investigation of pseudorandom operation. a Schematic of the operation strategy of the micro-LED (μLED)-embedded photoactivated gas
sensor. a-(i) shows a pseudorandom input to μLED consisting of shuffled five levels of voltages. a-(ii) shows the time-domain transient sensor signal
(sensor current). Alternation of photoactivation and deactivation causes the difference in the transient signals to different gas species. a-(iii) shows the
frequency spectrum of the normalized sensor signal. b Measured forward current of μLED with five selected levels of μLED voltages. c Pseudorandom
input consisting of five selected levels of voltages (time interval = 2 s and sampling rate = 10 Hz) in a unit time window (60 s). d Frequency spectrum
of pseudorandom input in a time window. e, f Dynamic response (Log10(R/R0)) and spectrogram of the sensor signal to ethanol and methanol with
various concentrations. Gray and red lines indicate raw transient signals and moving averages in a 60 s time window, respectively. The highly ranked
46 spectral components were used for the spectrogram data, but only 20 components are shown in the figure

Cho et al. Light: Science & Applications           (2023) 12:95 Page 5 of 12



to the frequency domain. Prior to calculating the fre-
quency spectrum, the sensor signal (Isensor) is normalized
((X - μ)/σ, where X is the raw signal) by the mean (μ) and
standard deviation (σ) in the fixed time window (60 s).
The distinctive patterns originating from differences in
the chemical kinetics of various gas reactions can be
obtained from the frequency spectrum.
Figure 2b shows the measured forward current of the

fabricated μLED with 5 selected voltage levels (2.2, 2.6,
2.8, 3.0, and 3.2 V). The turn-on voltage of the fabricated
μLED is 2.4 V; the μLED is completely turned off at
VLED= 2.2 V. Thus, five voltage levels of the pseudoran-
dom input are composed of four on-state voltage levels
and one off-state voltage levels. In addition, the time
interval for switching between the different voltage levels
is set to 2 s (switching frequency = 0.5 Hz and sampling
frequency = 10 Hz). The pseudorandom input is gener-
ated by shuffling five selected voltage levels in a unit
period (2 s × 5= 10 s). This process is precisely controlled
by an interface software connected to a voltage source.
Figure 2c shows the generated pseudorandom input in a
time window of 60 s. Each voltage level appears with the
same probability in the time window. The average power
consumption of the μLED, calculated using the pseudor-
andom input voltages and their measured μLED current
in Fig. 2b, is only 526 μW. Figure 2d shows the frequency
spectrum of the pseudorandom input in Fig. 2c. The
upper bound frequency is 5 Hz, which is half of the
sampling frequency (fs= 10 Hz), according to Nyquist
theorem; the spectral resolution is fs/L= 1/60 Hz, where L
is the length of the time frame of the pseudorandom
input. As mentioned before, the frequency spectrum of
the pseudorandom input contains almost all frequency
components, similar to the power spectrum of a white
noise. Exceptionally, there are a few cut-off regions at
multiples of 0.5 Hz that originate from the switching
interval (2 s) of the multi-voltage levels.
Sensing data corresponding to the various concentra-

tions of methanol, ethanol, acetone, and NO2 were col-
lected under pseudorandom operation of the μLED. The
sampling rate of the sensor signal is 10 Hz, which is well-
synchronized to the input signal of the μLED. The
dynamic responses (Log10(R/R0), where R and R0 are the
real-time sensor resistance and the average resistance in
air, respectively) and spectrograms of the sensor signals
to ethanol and methanol are shown in Fig. 2e, f, respec-
tively. Fig. S6 explains more detailed pre-processing flow
and dimensions of sensing data. Here, computed spec-
trograms originally have 301 spectral components. In
order to reduce the size of data and computing load
during the deep-learning process, intra-class variance
(defined as the variances of spectrum values in the same
gas species) and between-class variance (defined as the
average values of species-to-species variances) of each

spectral component were computed. Then, highly ranked
46 spectral components were selected, which have low
intra-class variances and high between-class variances. A
low value of intra-class variance and high value of
between-class variance mean high reproducibility and
good separation for different gas categories37. By this
method, input data for deep-learning could be lightened.
Data for acetone and NO2 are provided in Fig. S7. The
gray curves in the graph represent raw sensor responses,
and the red curves represent moving averages in a 60 s
time window. The moving average lines (DC components
of the signal) basically follow the general tendency of
n-type SMOs exposed to reducing gases. In addition, it is
evident that the spectrograms vary depending on the gas
environment.

Deep-learning-based gas identification results
A deep convolutional neural network (D-CNN) was

employed to categorize the type and to quantify the
concentration of the target gas from the complex spec-
trogram data. The D-CNN, with dual-task performance
(classification and regression) is designed, as illustrated in
Fig. 3a. First, the pseudorandom input and sensor output
signals in a unit time window (60 s) are renewed every 1 s
(stride interval = 1 s). Thereafter, the frequency spectrum
is sequentially calculated. The last calculated spectrum is
concatenated with the 59 spectral datasets for the last 60 s
that are stored in memory, forming a 2-dimensional
spectrogram. In addition to the spectrogram, the DC
component of the sensor signal can provide important
information regarding the gas concentration, as shown in
Fig. 2e, f. Therefore, a sequence of 60 moving average
points of the sensor signal is also supplied as an input to
the neural network. The spectrogram and moving avera-
ges are first processed by the respective average pooling
layers and convolution kernels. As the chemical reactions
are time-domain phenomena, convolution layers can
extract temporal features from the spectrograms more
effectively. Tensors processed by the convolutional layers
merge and propagate to the fully connected (FC) layers.
Each hidden layer is composed of a linear transformation
layer (Fl+1=Wl ∙ Fl+ Bl), a batch-normalization layer,
and a leaky-ReLU (rectified linear unit) activation func-
tion (negative slope = 0.01). The output layer is separated
into a five-channel classification node and a one-channel
regression node. The classification layer, composed of the
linear transformation layer and softmax function (yk ¼
exp akð Þ=Pn

i¼1 expðakÞ), outputs the index of the channel
with the maximum probability representing the predicted
gas species. In contrast, the regression layer performs
linear transformation and unit conversion to ppm that
estimates the gas concentration. Finally, the real-time
outputs are filtered to reduce noises (mode filter and
average filter for the classification and regression outputs,

Cho et al. Light: Science & Applications           (2023) 12:95 Page 6 of 12



respectively). The architecture of the D-CNN is illustrated
in detail in Fig. S8.
For training the D-CNN, we collected 624k frames of

the spectrogram and the corresponding moving averages
for pure air, methanol, ethanol, acetone, and NO2. The
ratio of the training, validation, and test datasets was set
to 4:1:1. All datasets were labeled with ground-truth gas
species and concentrations to conduct a supervised

learning. The gas concentration (ppm) was normalized by
the maximum concentration of each tested gas to reduce
the bias resulting from the difference in the tested con-
centration range for each gas type. The total training loss
is defined as Ltotal ¼ w � Lcross�entropy þ ð1� wÞ � LMSE;
where Lcross-entropy, LMSE, and w are the cross-entropy loss
(Lcross�entropy ¼ �PN

i tilogðyiÞ) of the classification out-
puts, mean-square error (MSE, LMSE ¼ 1
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i ðyi � tiÞ2) of

1 10 100
40

50

60

70

80

90

100

 
 

 Training data
 Validation data

0.00

0.01

0.02

0.03

0.04

99.0

92.3

88.0

84.6

87.2

2.3

0.0

0.0

0.0

0.3

0.0

0.0

0.2 0.2 0.6 0.0

0.0

0.1

0.4

0.00.2

11.7 4.9 15.4 12.6

  
  

 

0.0 0.5 1.0

0.0

0.5

1.0

 

 

 
 

  

a

b c d

e f

Air

Air

Methanol

M
et

han
ol

Ethanol

Eth
an

ol

Acetone

Ace
to

ne

Ground truth

P
re

di
ct

io
n

100

0

Moving average points

Avg. Pool. 1D, BN
(10)

(60)

FC layers

C
lassification

R
egression

(5)

(1)

Time (60 s)

Log10 (R/Rair)

S
el

ec
te

d 
F

re
q.

tt – 60
t – 1
t – 2
t – 59

Time window (60 s) 

R
ea

l-t
im

e 
si

gn
al

s

3 kernels

Avg. Pool. 2D
Conv. 2D, BN

(46, 1)

Dual-task output

Air

Methanol

Ethanol

NO2

Acetone

NO2

NO2(3)

NO 2

Concent.

30 50 100 (ppm) 30 50 100 (ppm)
True gas
MtOH: 10

True gas
EtOH: 10

P
re

di
ct

ed
 c

on
ce

nt
.

(p
pm

) 

P
re

di
ct

ed
 c

on
ce

nt
.

(p
pm

) 

P
re

di
ct

ed
 g

as
 la

be
l

Sensor response, Isensor 

Isensorspectrogram (46, 60) 

LED input voltage

R
eg

re
ss

io
n 

M
S

E

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

P
re

di
ct

ed
 c

on
ce

nt
. (

0–
1)

 

True concent. (0-1) 

Air(0)

Methanol(1)

Ethanol(2)

Acetone(4)

NO2(3)

Air(0)

Methanol(1)

Ethanol(2)

Acetone(4)

P
re

di
ct

ed
 g

as
 la

be
l

50

100

150

0

50

100

150

200

0

0

3 6 9 12

Time (h)

0 3 6 9 12

Time (h)

Epoch

Training data
Validation data

Fig. 3 Deep-learning-based identification of mono-gas environment. a Architecture of deep convolutional neural network (D-CNN) for
classifying five gas species (air, methanol, ethanol, NO2, and acetone) and for quantifying the concentrations of each gas. b Classification accuracy
and regression loss for the training and validation datasets with respect to the training iterations. c, d Gas species prediction results summarized in a
confusion matrix and gas concentrations normalized to 0–1 for test dataset. The predicted gas concentrations are close to the identity line (y= x)
with r2= 0.888. e, f Real-time prediction of gas species and concentrations of methanol and ethanol. Here, normalized gas concentrations are
converted to ppm by multiplying the maximum tested concentration of each gas

Cho et al. Light: Science & Applications           (2023) 12:95 Page 7 of 12



the regression outputs, and weighting factor, respectively.
The weighting factor (0 <w < 1) is a kind of hyperpara-
meter to roughly match the scales of two loss functions
and allow the training to proceed evenly for the classifi-
cation and regression. Here, the constant weighting factor
of 0.4 was used during the training progress. The Adam
optimizer with a constant learning rate (η= 0.001) was
used to minimize the total training loss. As shown in
Fig. 3b, the D-CNN was trained through 130 epochs
without much divergence. The classification accuracy and
regression MSE for the validation dataset reached 96.38%
and 7.8 × 10-2, respectively (Note that the normalized
concentrations range from 0 to 1.), at the last iteration.
Figure 3c shows the predicted gas species summarized in
the confusion matrix for the test dataset. The D-CNN
presents accurate prediction of each gases over 85%
accuracy. Falsely predicted cases are mostly reactive gases
to pure air (methanol to air (11.7%), ethanol to air (4.9%),
NO2 to air (15.4%), and acetone to air (12.6%)). Overall
accuracy was calculated to be 96.99%. By the analysis of
result, it has been confirmed that the falsely predicted
cases occur mostly in the regions where there is a drastic
gas transition during real-time gas prediction.
Figure 3d shows the scatter plot between the normal-

ized true concentration and the predicted concentration
for all tested gases. The predicted gas concentrations
show high correctness to true values and are close to the
identity line (y= x) with r2= 0.888. Figure 3e, f shows the
real-time prediction of gas species and concentrations to
the methanol and ethanol gases, respectively, by the
forward-propagation of time-sequential test datasets into
the trained D-CNN. Real-time predictions for NO2 and
acetone gases are given in Fig. S9. The maximum latency
of the prediction is 80 s and 79 s in the response and
recovery stages, respectively; therefore, it can be con-
firmed that the prediction of both the gas species and
concentration is sufficiently fast for general applications
of real-time gas detection, and the pseudorandom
operation of μLED and the processing sensor responses
using a D-CNN can effectively identify mono-gas
environments.

Prediction results of gas mixture
Quantitative identification of individual gas species in a

gas mixture is the ultimate goal of e-nose technology.
Several studies have demonstrated the possibility of
identifying gas mixtures using multi-sensor arrays39–41.
However, multi-sensor-based approaches still lack effi-
ciency in terms of cost, space, and power consumption.
Furthermore, real-time identification of gas mixtures has
rarely been explored owing to the lack of decoding power
in the conventional ML methods. This study demon-
strates real-time quantitative identification of a binary gas
mixture (specifically methanol and ethanol) using the

proposed sensing strategy and deep-learning algorithm.
First, the aforementioned dual-task D-CNN has been
modified to ensure its suitability for analyzing the mixed
gas. The pre-processing method and overall architecture
of the D-CNN is maintained as is, while only the output
layer is modified. In the modified output layer, the tensors
represent the normalized concentrations of the con-
stituent gases and their confidence scores. The binary
confidence score is defined by the existence of a specific
gas, 1 and 0 indicating the presence and absence of the
gas, respectively. Therefore, the dataset must be labeled
with true normalized concentrations (0–1) of the con-
stituent gases and their existence (0 or 1). Here, the
combination of gas species to be analyzed is expandable
by extending the length of the output tensor and pre-
training in the appropriate target environments.
In order to prove the feasibility of the concept, the

sensing data of the various mixture combinations of
methanol (0–100 ppm) and ethanol (0–100 ppm) gases
were collected under the pseudorandom operation of the
μLED. Fig. S10 shows the dynamic responses (Log10(R/
R0)) and their preprocessed spectrograms with various
mixing ratios of methanol and ethanol. The variations of
response signals tend to be proportional to the total
amount of gas components, and the spectrograms are
evidently different owing to the various mixture states. To
analyze the features of the spectrograms, the D-CNN was
trained with 420k frames of the dataset. The total training
loss is defined as Ltotal ¼ w � LMSE;confidence þ ð1� wÞ �
LMSE;concentration; where LMSE,confidence, LMSE,concentration,
and w denote the MSE of the confidence score, regression
outputs, and the weighting factor, respectively. The
weighting factor (0 <w < 1) is also for matching the scales
of two MSEs during the training progress (w= 0.4). After
130 epochs of training, the total loss for the validation
dataset was 1.2 × 10-2, without any overfitting, as shown in
Fig. S11. Figure 4 shows the real-time identification of gas
mixtures with the various mixture ratios of methanol and
ethanol gases. Confidence scores clearly indicate the
presence of gas in both the mono-gas environment (30
ppm methanol and 0 ppm ethanol) and the gas mixture
environment (30 ppm methanol and 50 ppm ethanol; 50
ppm methanol and 50 ppm ethanol; 100 ppm methanol
and 50 ppm ethanol). The overall accuracy of the con-
fidence scores, evaluated by a threshold criterion (con-
fidence score <0.5 as 0 (no gas) and confidence score ≥0.5
as 1), are 97.63% and 98.68% for methanol and ethanol,
respectively. Further, the predicted concentrations of the
gases show adequate accuracy when compared with the
true value. Mean absolute percentage error (MAPE) of the
predicted concentrations are 36.8% and 32.3% for
methanol and ethanol in the non-mixing (i.e. mono-gas)
state, respectively, as summarized in Fig. S12. Further-
more, the modified D-CNN successfully estimates the
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concentration of each gas constituent in the mixtures
(MAPEs of predicted concentrations are 34.5% and 34.3%
for methanol and ethanol, respectively). The results of
various mixture ratios of methanol and ethanol are pro-
vided in Fig. S13.

Discussion
In Table 1, this study is compared with some recent

studies pertaining to ML-based e-nose technology.
Whereas most conventional studies utilized 8–20 multi-
sensor array for gas identification22–24, the current study
uses only a single sensor, providing a much more efficient
approach for the gas identification in terms of cost, space,
and power consumption. Although there have been other
studies to reduce the power consumption using a single
sensor, global heating was still used and did not show
actual reduction of the power consumption25,42,43. Parti-
cularly, the μLP gas sensor used in this study consumes
merely 526 μW, which is a record low power consump-
tion among the various activation sources for the SMO-
based e-nose technology. State-of-the-art microheater-
based gas sensors have achieved sub-10 mW power
comsumption44–46, and further power-saving has neces-
sitated high-cost nanofabrication techniques47,48. On the
other hand, the μLP gas sensors that are based on cost-

effective micro-fabrication processes facilitate microwatt-
level average power consumption. Additionally, previous
monolithic LED gas sensors could cause electrical shorts
due to the sensing materials34,49. In this study, double
SiO2 insulating layers were used to prevent electrical
shorts between the sensor electrode and the p–n elec-
trodes of μLED. Therefore, the proposed sensing device
can greatly improve the efficiency of the e-nose system
and has a great potential for using any gas-sensing
material without electrical shorts. Some carbon
nanomaterial-based sensors in Table 1 consume negli-
gible electrical power, owing to their operation at room
temperature and no requirement of activation sour-
ces23,42. However, no gas quantification capabilities were
demonstrated for theses carbon nanomaterial-based sen-
sors, possibly due to the limited reversibility, linearity, and
speed of the sensor response. With respect to the analysis
method, the proposed D-CNN exhibits highly accurate
gas-identification performance in both the classification
task (accuracy = 96.99%) and regression task (MAPE=
31.99%), when compared with the conventional ML
analysis methods, such as multilayer perceptron (MLP),
k-nearest neighbors (KNN), and support vector machine
(SVM). In particular, this study exhibits real-time identi-
fication capability for the entire monitoring period,
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whereas most conventional e-nose studies only demon-
strated the performance in the steady-state sensor
responses, excluding transient responses in the drastic gas
transition periods. Furthermore, the proposed sensing
strategy facilitates the accurate analysis of gas mixtures
and highly improves its utility in the complex gas envir-
onments of real fields. Although there is a study that has
conducted classification of each gas in the gas mixtures
(CO and CH4) with a commercial SMO gas sensor array,
there has been no study that quantified the concentration
of each gas in real-time50. Figure S14 summarizes the
advantages of the single sensor-based electronic nose
system developed in this study using the μLP gas sensor
and pseudorandom illumination. In addition, although the
highly sensitive gold NPs coated GLAD In2O3 has been
utilized to demonstrate the proof-of-concept of the
research in this study, the suggested time-variant light
illumination method is expected to work universally for
various sensing materials. Therefore, exploring new sen-
sing materials will be continued for future studies.
In summary, this paper proposed a novel sensing

strategy to identify gas species selectively and to esti-
mate the concentrations of multiple gases. The pro-
posed method applies pseudorandom input to a single
monolithic μLP gas sensor. Transient sensor signals,
owing to the rapid changes in the light intensity of μLED
and different reaction kinetics of various gas species,
facilitate the identification of gas species. In this study,
the excellent durability of the GaN-based μLED facil-
itates drastic, wide-range alternation in the light inten-
sity and long-term use. A D-CNN was used to effectively
analyze the complex frequency spectrogram of the
transient sensor signals. As such, the identification of
four mono-gas environments and binary gas mixtures of
the two selected gases (ethanol and methanol) were
successfully demonstrated with high accuracy. The
proposed method, using a single chemoresistive gas
sensor, is expected to provide the most efficient method
for analyzing various gas environments in terms of cost,
space, and power consumption. Therefore, the proposed
concept is expected to be used extensively in real-life
applications in environmental monitoring, disease
diagnosis, food process monitoring, and agricultural
fields. For future research, further collection and
investigation of the big data corresponding to gas-
sensing in various environments will be continued. For
this, system-level integration of sensors, analog-front-
end circuits, processors with capabilities for computing
the lightweight ML will be necessary. For example, the
device-edge ML computation with a neuromorphic
processor will allow more rapid, power-efficient gas
identification in the actual application fields. In addi-
tion, further studies of sensing materials with improved
optical and sensing properties will be investigated.

Materials and methods
Fabrication of μLED-embedded photoactivated (μLP) gas
sensors
The fabrication process of the μLP gas-sensing platform

is based on the method proposed in our previous work34.
In this study, the indium concentration in the InGaN/GaN
MQW layers was precisely tuned for the near-UV emis-
sion (approximate emission wavelength of 395 nm) during
a MOCVD process. The emission area was designed to be
50 × 50 μm2. After fabrication of μLP gas sensors in wafer-
scale, they were diced into a single sensor chip size of 5 × 5
mm2 through a blade dicing. Prior to integrating the
sensing material, a 3.5 μm-thick photoresist (AZ nlof 2035,
MicroChemicals, Germany) was patterned on the pre-
fabricated μLP platform to define the sensing area. Nano-
porous In2O3 films were deposited based on the GLAD
method using a radio frequency (RF) sputtering system.
The specific process conditions were as follows: argon
atmosphere with a pressure of 4 mTorr, tilt angle of 85°,
rotation speed of 3.6 rpm, RF power of 250W, and a
deposition time of 90min. Next, gold NPs were coated on
the GLAD In2O3 surface by e-beam evaporation with a
deposition thickness of 1 nm measured by QCM sensor.
Thereafter, the GLAD In2O3 film coated with gold NPs
was patterned by a lift-off process in acetone.

Characterization of the fabricated devices
The fabricated sensor devices were observed using field

emission scanning electron microscopy (FE-SEM; SU8230,
Hitachi, Japan). The porosity of the deposited In2O3 sensing
layer was approximated through an image processing of the
top-view SEM image, as shown in Fig. S3. The porosity (φ)
is generally defined as φ= (volume of voids)/(total volume)
× 100 (%) ≈ (top-view area of voids)/(total top-view area) ×
100 (%), assuming that the film has a prismatic columnar
structure. The optical and electrical properties of the μLEDs
were obtained using an L-I-V measurement system (OPI
160, WITHLIGHT, S. Korea) with an integrating sphere
and a source-meter (Keithley 2400, USA).

Data acquisition
The sensor devices were mounted in a customized

testing chamber and connected to a dual-channel source-
meter (Keithley 2636b, USA) to apply a forward bias to the
μLED and measure the sensing resistance at a sampling
rate of 10Hz. The pseudorandom input signal, composed
of five levels of voltages (2.2, 2.6, 2.8, 3.0, and 3.2 V) with a
fixed time interval (2 s) for each level, was generated by an
interface software (LabVIEW, National Instruments,
USA). Gas was supplied to the sensor device, and the
concentration of the tested gases (methanol, ethanol, NO2,
and acetone) was monitored by controlling the flow rates
of each gas and dry air with mass flow controllers (MFC).
More details are summarized in Fig. S15.
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Deep-learning-based gas identification
The open source machine-learning library (PyTorch,

Meta, USA) was utilized to construct the deep convolu-
tional neural network (D-CNN). Training of the D-CNN
was accelerated using a high-performance GPU (RTX
Titan, NVIDIA, USA)-based computing environment.
The architecture of the D-CNN is illustrated in detail in
Fig. S8. For the best training results, hyperparameters of
D-CNN learning was tuned, such as the size of the net-
work, activation/loss functions, the learning rate for
Adam optimizer, and weightings for classification and
regression losses.
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