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the performance characteristics of gas sen-
sors. Specifically, nanomaterials have been 
synthesized to achieve high sensitivity and 
high selectivity;[1–4] also, micro-electro-
mechanical-systems (MEMS) platforms 
have been designed for low-power con-
sumption and fast response speeds;[5] and 
batch fabrication processes have been 
used to reduce the cost.[6,7] However, it is 
challenging to achieve all or most of the 
desired performance parameters simul-
taneously using a single sensor, largely 
due to the cross-sensitivity of a sensor.[1] 
Thus, research has come to use arrays 
of different gas sensors with a focus on 
enhancing discrimination performance 
while attaining a low-power consumption, 
key metrics for an array.

Recently developed chemiresistive-
type gas sensors are made of different 
metal oxide nanomaterials and/or doping 
with metal nanoparticles on integrated 
heaters.[3,4,6,8–11] They are attractive for 
gas sensing arrays because each sensor’s 
selectivity can be tuned and they can be 

miniaturized for low-power consumption.[3,4,6,9–11] However, 
although good discrimination performances have been shown 
with chemiresistive arrays through rational designs and statis-
tical analyses,[8,11] the sensors have broad selectivity, that is, they 
respond to many gases; this potentially limits the discrimina-
tion performance because multiple sensors are contributing 
similar information about a gas.[12] Combining different trans-
duction mechanisms, besides chemiresistive type, is a way to 
help improve this issue.

Multi-transduction arrays can show better discrimination 
performance[13–15] and require less number of constituent sen-
sors[14,15] than single transduction arrays; this is due to their 
orthogonal responses to the target gases in the chemical feature 
space.[12,16] For example, in previous work[15] for the detection 
of contraband food, 19 sensors (comprising 3 different trans-
duction mechanisms) were combined in different sub-arrays 
to compare their performance; the results show that the best 
subset-array of 2 sensors (from two different transduction 
mechanisms) showed better performance than any single-
transduction combination. In general, the various types of 
gas sensors contained in arrays use different physicochemical 
properties of the target analytes, including, combustibility (cata-
lytic combustion sensors),[17,18] thermal conductivity,[17,19] mass 
(gravimetric),[20–22] electrochemical properties  (electrochemical 
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1. Introduction

Many important but hazardous gases in the industry are toxic 
and/or flammable. To ensure the safety of workers and proper-
ties, accurate and portable gas sensing is desired. Accordingly, 
various research approaches have been developed to improve 
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sensors),[23] light modulation (optical sensors),[16,24] etc. Which 
type of sensor to combine in a multi-transduction array 
depends on the specific application, selectivity ranges of the 
constituent sensors,[12] and compatibility of materials and pro-
cesses. Interestingly, the performance of multi-transduction 
arrays has been reported to increase if we combine sensors with 
different selectivity to the different gases (narrow, medium, and 
broad selectivity); here, narrow selectivity indicates a sensor is 
selective (responsive) to very few gases while broad selectivity 
indicates the responsiveness of a sensor to many gases.[12,25] In 
this regard, chemiresistive-type sensors (N-type and P-type) and 
calorimetric-type sensors (thermal conductivity and catalytic 
combustion) are appropriate candidates for multi-transduction 
sensor arrays for low-power, high-accuracy sensing of flam-
mable and toxic gases. These sensors show various ranges of 
selectivity, for example, chemiresistive sensors have wider sen-
sitive ranges than thermal conductivity sensors; additionally, 
they have the ability to be miniaturized[4,17] and require similar 
circuity, that is, they monitor resistance changes. Another com-
plementary advantage of the chemiresistive and calorimetric 
sensors is that metal oxides perform better at lower gas con-
centrations (in parts per million, ppm) whereas calorimetric 
sensors perform better at higher concentrations (up to a few 
percent).[26] However, finding compatible fabrication and inte-
gration methods for the different sensing materials/catalysts in 
a miniaturized chip is one of the main challenges in fabricating 
this type of multi-transduction array. Additionally, to simulta-
neously achieve low-power consumption, fast response, high 
sensitivity, various sensitivity characteristics of the constituent 
sensors, and accurate sensing, that is, comparable to modern-
day gas sensors and arrays, it is imperative to apply a combina-
tion of techniques such as MEMS technology, local integration 
methods, nanomaterials, and machine learning.

Herein, we present a multi-transduction gas-sensing array 
composed of four sensors, two chemiresistive devices (N-type 
and P-type), and two calorimetric devices (catalytic and 
thermal conductivity) for accurate and low-power detection 
of five  flammable/toxic gases in real-time (with the aid of a 
machine learning algorithm). Nanostructured metal oxides 
for the chemiresistive devices (and a noble metal catalyst for 
the catalytic sensor) are integrated on a MEMS platform via 
 successive, compatible localized synthesis methods (local 
hydrothermal synthesis[4,7] and local electrodeposition).[17] This 
fabrication strategy allows for the integration of the nanomate-
rials in a very small area and helps to simultaneously achieve 
low-power consumption, fast response, and high sensitivity. 
Compared to other miniaturized chemiresistive and multi-
transduction arrays in previous studies, the device fabricated 
in this work has the scalability of the fabrication process and 
also can be driven with very low power consumption.[10,6,21,27] 
The constituent sensors in the array were selected to display 
various sensitivity characteristics depending on the properties 
of the target gases, which contribute to accurate gas sensing. 
We justified the selected combination of the constituent sen-
sors by using principal component analysis (PCA). As non-
supervised learning techniques do not allow for real-time 
detection, we have implemented a machine learning technique 
based on convolutional neural networks (CNNs) and a transient 
sliding window for real-time classification and quantification 

 (regression) of the different gases,[6] achieving gas identification 
in real-time even using the response data at the specific concen-
tration not used for training the network.

2. Results and Discussion

2.1. Description of the Fabricated Array and Sensing Strategy

Figure 1 shows an overview of the work reported herein: a sche-
matic representation of the multi-transduction gas sensing 
array (Figure  1a), optical microscope images of the fabricated 
array consisting of the 4 sensors (Figure  1b), scanning elec-
tron microscope images of the locally-synthesized nanomate-
rials (Figure  1c), and the gas sensing strategy utilized for the 
accurate sensing of flammable and toxic gases (Figure 1d). As 
shown in Figure  1a,b, all sensors consist of identical bridge-
type microheaters with small active areas of 9 µm × 110 µm (per 
individual sensor) for fast responses and low-power operations 
(7 mW per device). For the calorimetric sensors, the resistances 
of the microheaters are recorded as they change in response to 
a target gas, while in the case of chemiresistive sensors (CuO 
nanosheets for the P-type sensor and ZnO nanowires for the 
N-type), the resistances of the nanomaterials are recorded 
as they change in response to a target gas; thus, for the calo-
rimetric devices, the microheaters also act as resistive tem-
perature detectors (RTDs). The calorimetric devices have Au 
electrodeposition electrodes on top of the microheater, which 
allow the electrodeposition of the catalyst (nanostructured Pt 
Black) for the catalytic combustion sensor; the thermal conduc-
tivity sensor does not have any nanomaterial integrated and the 
electrode is fabricated to match the thermal characteristics of 
the catalytic combustion sensor (this helps distinguish when 
an atmosphere is flammable as explain hereinafter). Both cal-
orimetric sensors react to thermal conductivity changes in an 
environment but the catalytic combustion sensor also experi-
ences an increase in resistance if a flammable gas is combusted 
on the surface of the catalyst (indicating the presence of a flam-
mable gas/atmosphere). On the other hand, the chemiresistive 
devices have pairs of Au electrodes (with a 3 µm gap) to sense 
the resistance changes of the nanomaterials above them. The 
integration of the sensing layers (CuO and ZnO) and nano-
catalysts (Pt Black) on these small areas of the microheaters is 
achieved by the use of successive, compatible local synthesis 
processes, that is, local hydrothermal synthesis[4,7] for CuO and 
ZnO and local electrodeposition for Pt Black.[17] Using the tran-
sient response of each constituent sensor, Figure 1d shows an 
overview of the machine-learning strategy used for real-time 
classification and regression. Specifically, a 5-second-sliding 
window for each of the responses is used to build a tensor that 
gets passed to a CNN architecture, ultimately outputting the 
gas class (gas type) and regression values (concentration) in 
real time.

Based on their flammability limits and levels of toxicity, the 
hazardous gases studied herein (H2, NO2, C2H6O, CO, and 
NH3) have different risk-relevant concentrations as presented 
in Table S1 (Supporting Information); here, we test concentra-
tions for each gas below its flammability range or permissible 
exposure limit, whichever of the two is lower for a particular 
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Figure 1. Overview of the multi-transduction gas sensor array for real-time gas sensing. a) Schematic representation of the constituent sensors in 
the array, including exploded views of the layers (sides). b) Optical microscope images of the fabricated array with all sensing materials synthesized. 
c) Scanning Electron Microscope images of the fabricated nanomaterials on their respective microheaters; the thermal conductivity sensor does not 
carry any nanomaterial and the bare microheater beam is shown here. d) Overview of the machine learning strategy, whereby transient responses are 
processed for real-time classification and regression.

 23669608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

td.202201352 by K
orea A

dvanced Institute O
f, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



© 2023 Wiley-VCH GmbH2201352 (4 of 11)

www.advancedsciencenews.com www.small-methods.com

gas. Figure S1 (Supporting Information) shows the constituent 
sensors of the fabricated array and their cross-sensitivity to each 
of the tested gases. The sensors in the array were fabricated to 
have these various ranges of selectivity for the different gases 
because having different selectivity ranges in an array helps to 
achieve better discrimination performance.[12,25]

2.2. Device Fabrication: MEMS Platform and Localized, In Situ 
Synthesis of Nanomaterials

Each nanomaterial is synthesized locally on the low-power 
MEMS platform (Figure  2a). To fabricate the multi-transduc-
tion arrays, not only the calorimetric-type sensors but also 
the chemiresistive-type sensors should be integrated into the 
device. The local syntheses (integration techniques) of the 
nanomaterials follow four basic sequential steps as shown in 
Figure 2b–e. The first step consists of sputtering SnO2 seeds on 
the entire chip. This plants the seeds for the subsequent growth 
of the metal oxides (CuO and ZnO) in steps 3 and 4. Before 
growing the metal oxides, the Pt nanostructures are grown in 
situ via electrodeposition with 0.1% platinic acid (with 0.005% 
lead acetate); this is a modified version of our previous work 
to avoid etching of the sputtered seeds.[17] The Pt in the plat-
inic acid is generally reduced from platinum (IV) to platinum 
(II) and then to platinum (0) or directly from platinum (IV) to 

platinum (0).[28] Through an electric field, the metal complexes 
PtIVCl62− or PtIICl42− approach the cathode, and the reduction 
of the Pt is conducted through an ad-atom mechanism.[29] 
The synthesized Pt nanostructures by electrodeposition have 
a pseudo-porous structure with interconnected sphere-like 
protrusions of ≈40–110  nm.[17] Since the pseudo-porous struc-
ture facilitates the target gases to diffuse easily and provides 
high thermal conductivity to the embedded RTD easily, this 
 structure is advantageous for gas sensing. For the chemiresis-
tive type sensors, ZnO and CuO were used in this work, and 
these semiconducting materials can react with the gases at 
high-temperature conditions (above 150  °C). To generate the 
high-temperature conditions (≈250  °C), the metal oxides were 
integrated into the microheaters. Their sensing mechanism 
is based on their resistance change in the presence of a target 
gas that is explained by the removal or coverage of oxygen ions 
(O− and O2−) from the surface of the metal oxide.[4] Due to the 
sensing mechanism of the chemiresistive type sensors, it is 
important to increase the surface-to-volume ratio of the sensing 
materials for improved sensing performance. Therefore, the 
local hydrothermal synthesis method was selected to locally 
integrate the metal oxide sensing materials with a large sur-
face area on the bridge-type microheater. In steps 3 and 4, ZnO 
nanowires and CuO nanosheets are grown, respectively. By 
putting a Polydimethylsiloxane well on top of the chip, we can 
deposit a small volume of the ZnO or CuO precursor solution 

Small Methods 2023, 2201352

Figure 2. Overview of the fabrication process (integration of nanomaterials). a) top view of the chip. b) Step 1 consists of depositing the SnO2 seed 
layer for eventual hydrothermal growth. c) The nanostructured Pt Black is synthesized via electrodeposition (the solution does not affect the seed layer). 
d) Local hydrothermal growth of ZnO nanowires using joule heating. e) Local hydrothermal growth of CuO nanosheets using joule heating. In steps 
2–4, rinsing in acetone and ethanol is performed between steps and at the end.
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to later grow the nanostructures of each material in situ when 
Joule heating is applied to the submerged microheater. When 
an electrical voltage was applied to the microheater in the ZnO 
or CuO precursor solution, convective mass transfer of pre-
cursor solution was generated by a localized temperature rise 
via the Joule heating.[4,30] The nanostructured ZnO and CuO 
could be integrated into the microheater by endothermal reac-
tion of precursor chemicals, and the fresh precursor could be 
supplied to the microheater by the convective mass transfer.[4] 
Finally, the ZnO nanowires and CuO nanosheets with large 
surface-to-volume ratios were successfully integrated into the 
microheater. Table S2 (Supporting Information) lists the metal 
salts and other parameters for these hydrothermal growth pro-
cesses. Finally, by using the developed local integration tech-
niques, chemiresistive-type and calorimetric-type sensors could 
be used in the same device, unlike the previous works.[4,7,17,30] 
The crystalline characteristics of the Pt black are well described 
in our previous work,[17] and through the X-ray diffraction anal-
ysis, it was confirmed that highly crystalline structures of ZnO 
nanowires and CuO nanosheets were well synthesized by the 
hydrothermal method (Figure S2, Supporting Information).

It is noteworthy to mention that, during the fabrication, 
the order for the integration of each nanomaterial is impor-
tant. The sequence for the integration of the nanomaterials 
(as in Figure  2) was established by studying the compatibility 
of the different nanostructures to the different precursors; for 
example, Table S3 (Supporting Information) shows that it is 
important to sputter the SnO2 nanoparticles before the elec-
trodeposition of the Pt black because the sputtered particles 
decrease the performance of the catalytic sensor if done after 
synthesis of the Pt catalyst. Similarly, the CuO precursor can 
etch away the ZnO nanowires if they are immersed for a long 
time. Thus, the sequence in Figure  2 and the parameters in 
Table S2 (Supporting Information) ensure compatibility in the 
fabrication of the array through the use of these local integra-
tion techniques for small-area integration of metal oxides and 
catalyst material.

2.3. Gas Sensor Responses and Operating Temperature

Figure  3a shows the transient responses of all four sensors 
tested simultaneously to the five different toxic/flammable 
gases. As summarized in Figure  3b, the magnitude and 
direction of the responses for all the sensors are different for 
most gases, constituting a unique “fingerprint” for each gas, 
favorable for gas identification. The trend and magnitude of 
each response correspond to how each sensor reacts to a par-
ticular gas. First, in the case of the catalytic combustion sensor, 
the H2 gas is locally combusted by the Pt-black catalyst.[17] This 
local combustion increases the temperature of the microheater, 
and thus the resistance of the underlying heater increases. On 
the other hand, in the case of a thermal conductivity sensor, 
local combustion cannot occur because there is no catalyst 
for combustion. Instead, since H2 gas has higher thermal 
 conductivity compared to the air, H2 gas causes a cooling effect 
on the thermal conductivity sensor. As a result, the resistance 
of the conductivity sensor decreases. In the case of C2H6O 
and NH3 gases, the resistance of both the catalytic combustion 

and thermal conductivity sensor decrease because they do not 
cause the catalytic combustion but have higher thermal con-
ductivity than the air. On the other hand, since NO2 and CO 
gases have similar thermal conductivities to air at the operating 
temperature of the sensors, it is hard to see the response of the 
catalytic combustion and thermal conductivity sensor to those 
gases. For the chemiresistive type sensors, the oxygen ions are 
chemisorbed on the surface of the metal oxide in the high-
temperature conditions above 150  °C and produce different 
effects on N-type and P-type metal oxides.[4,31] For the N-type 
metal oxide, the adsorbed oxygens pull electrons from the 
metal oxide, which generates the electron depletion layer. On 
the other hand, for the P-type metal oxide, a hole accumulation 
layer is generated by the adsorbed oxygens. Therefore, under 
reducing gas conditions, the adsorbed oxygen on the N-type 
metal oxide reacts with the reducing gases, and in this process, 
electrons are supplied to the N-type metal oxide, which reduces 
the resistance of the N-type metal oxide. In contrast, under  
oxidizing gas conditions, the resistance of the N-type metal 
oxide increases because the electron depletion layer increases 
due to the deprivation of the electron in the reaction process. 
The opposite phenomenon occurs in the resistance change of 
the P-type metal oxide since the major carrier of the P-type 
metal oxide is the hole. In this work, for the chemiresistive 
type sensors, ZnO (N-type) and CuO (P-type) were used, and 
they were integrated into the microheaters to generate the high- 
temperature condition (≈250 °C). Since the ZnO is N-type metal 
oxide, the responses of the ZnO sensor were smaller than 1 to 
the reducing gases (H2, C2H6O. CO, and NH3) and larger than 
1 to the oxidizing gas (NO2). On the other hand, the responses 
of the CuO sensor showed the opposite tendency because CuO 
is a P-type metal oxide. This property-specific response in each 
sensor is beneficial for gas sensing as we aim to combine sen-
sors that respond differently to each gas in the chemical feature 
space.[12]

After performing a temperature calibration of the chip 
(shown in Figure S3, Supporting Information), the surface tem-
perature of the microheaters at 7 mW is estimated to be 252 °C. 
This operating power was chosen because it yields the max-
imum sensitivity for all constituent sensors with good reli-
ability for the platform.[4,17] Furthermore, from the calibration, 
it was also found that for the calorimetric sensors, the tempera-
ture change per resistance change is 21.17 °C Ω−1, for example, 
during the exposure of 1.6% H2, the temperature increases by 
≈12 °C for the catalytic combustion sensor and it decreases by 
≈2 °C for the thermal conductivity sensor.

2.4. 2.4. Analysis of Possible Sensor Combinations and  
Discrimination Performance

As shown in Figure  4a, we performed PCA with all possible 
combinations of the four constituent sensors to evaluate their 
discrimination performance with cluster analysis; the subar-
rays included combinations of 2 sensors, 3 sensors, and 4 
sensors. When the response data of only two types of sensors 
were used, the cluster analysis should be conducted in the 2D 
plane. Therefore, in this work, the PCA for reduction of dimen-
sion was conducted even when response data of three and four 

Small Methods 2023, 2201352
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types of sensors were used to compare the analysis results in 
the same criteria. Given the limited number of sensors and 
target gases, it is difficult to draw broad conclusions; however, 

several inferences can be drawn from this work, consistent 
with similar analyses done in previous literature.[12,14,15] Most 
importantly, the best discrimination performance of an array 

Small Methods 2023, 2201352

Figure 3. a). Dynamic responses of the chemiresistive sensors (CuO and ZnO) and the calorimetric sensors (catalytic combustion and thermal con-
ductivity) to the exposure of risk-relevant concentrations of H2, NO2, C2H6O, CO, and NH3. b) Summary of the responses of the four sensors shown 
in part (a); the chemiresistive sensors have the same definition for their response (left axis), as do the calorimetric sensors (right axis).
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is when all four sensors are utilized; this indicates that based 
on the properties of the target gases, the 4-sensor array (with 
all sensors) helps to discriminate their presence. On the other 
hand, by looking at the 2-sensor array combinations, we can see 
that single mode (or transduction) arrays do not perform well 
as they have a high degree of linearity (only one gas is clustered 
in this case); on the contrary, a dual-mode 2-sensor array, com-
bining a CuO sensor (with broad selectivity) and the thermal 
conductivity sensor (narrower selectivity), shows very good 
results with 4 out of 5 gases clustered. The PCA plots for all 
combinations of 2-sensor arrays and 3-sensor arrays are shown 
in Figures S4,S5 (Supporting Information), respectively. The 
results in Figure 4 are consistent with previous studies where 
the combination of broadly selective and narrowly selective sen-
sors shows superior discrimination performance, even though 
the number of sensors is lower than other combinations.[12,25] 
Specifically, similar to findings in previous research,[15,25] 
Figure 4a shows that, in some cases, a lower number of sensors 
(e.g., 2-sensor arrays) may yield higher discriminating perfor-
mance, especially if there exist highly correlated sensors and/
or sensors with lower sensitivity in arrays that combine higher 
numbers of sensors like the first case of the 3-element array 
where only one cluster is not overlapping with other gases (as 
shown in Figure S5, Supporting Information).

The PCA of the first 2 principal components and first 3 prin-
cipal components of the 4-sensor array (the best array combina-
tion) are plotted in Figure 4b,c, respectively. As shown, PCA can 
cluster all five gases; however, as the concentration of each gas 

lowers, they converge to a common point and it may be harder 
to identify lower concentrations of gas. Even if the target gases 
may be classified well using a cluster classification algorithm 
(Linear Discriminant Analysis or Support Vector Machine) with 
a small number of sensors without reduction of the dimension 
using PCA, in the case of real-time gas identification, these 
algorithms may fail to classify the target gases due to limita-
tions in decoding performances. For these reasons, CNNs are 
used in this research to help with real-time classification and 
regression.

2.5. Real-Time Classification and Regression with CNNs

CNNs have been traditionally used for image processing; they 
have also been applied to gas sensing applications.[32,33] How-
ever, in those studies, transient responses were not considered 
and thus real-time detection was not possible. In Figure  5a, 
we show the data processing strategy used herein to identify 
the target gases and quantify the concentrations of the gases 
in real-time using the four signals of the sensors. As shown in 
Figure  3a, there were transient regions for a quite long time 
because the responses of the sensors did not saturate imme-
diately after the target gas injection. To perform real-time gas 
identification, it is essential to be able to classify the target 
gases and predict the concentration values of the gases even 
in the transient region. Therefore, in this work, a 5-second-
sliding window was used to utilize the gradient information 

Small Methods 2023, 2201352

Figure 4. a) Results of combining all possible combinations of the four constituent sensors for sub arrays of 2 sensors, 3 sensors, and all four sensors; 
the bar chart on the right shows the number of non-overlapping clusters (with PCA) to identify the five gases. The array with four sensors performs 
best, clustering all of the gases tested. b,c) Projection of the 4D responses of the 4-sensors array for b) the first 2 principal components and c) the 
first 3 principal components.
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Figure 5. a) Data processing strategy to identify and quantify the concentrations of target gases in real-time using the four sensor signals. b) Real-time 
output (over time) of the classification task (top row) and regression task (bottom row). c) (left) Confusion matrix of the classification task showing 
high classification accuracy (>94%) for all gases, with an overall accuracy of 97.95%; (right) percent error of the regression task for each gas, showing 
an overall average error of 14 percent.
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in the transient region, and the network structure was simi-
larly designed to the real-time classification and regression 
algorithms previously published using a sliding window and 
CNNs.[6] In this work, a 5-second-sliding window was used to 
record the transient responses of all four sensors and the input 
data to the algorithm was built in the form of a tensor; the 
transient responses were sampled, simultaneously, at a rate of 
2 Hz. For the gas identification, one-hot encoding and normali-
zation were used to provide the algorithm with the true labels 
for the gas types and concentrations, respectively. In the gas 
tests, the gas concentration ranges were different depending 
on the target gas. If the concentration values of some specific 
gases are larger than those of other gases, there is a concern 
that the weight for predicting the specific gas concentration 
values can be greater than those of other gases in the network. 
Therefore, to prevent the CNNs from being biased against the 
specific gases in predicting the gas concentration due to the dif-
ferent concentration ranges of the target gases, the maximum 
gas concentration value used in the learning network for each 
target gas was normalized to 10 for the regression task. The pre-
processed sensor signals were put into a 4 × 10 tensor, where 
every 0.5 s a new window was formed. The (n, 4, 10) windows 
were filtered by a 2D convolutional layer of size 4 × 5 every  
2.5 s, that is, to extract features in the tensor built; this layer 
was followed by a batched normalization layer. The output of 
the filter was passed to two consecutive fully connected layers 
of sizes 20 and 10, respectively, both with Rectified Linear Unit 
activation layers and followed by batch normalization layers. 
Finally, as there are six gases (including air), the final output 
layer has six nodes for classification and an additional node was 
used for the regression task.

From the total transient responses presented in Figure  3a, 
we have divided 60% of the data for training, 20% for valida-
tion, and the remaining 20% for testing (Table S4, Supporting 
Information). As shown in Table S4 (Supporting Information), 
we aim to predict concentrations not previously seen during the 
training; these estimations represent more realistic scenarios 
encountered in normal operations. It is noteworthy to mention 
that these intermediate concentration estimations are more 
challenging to perform; such estimation has been previously 
reported in the literature with overall regression errors below 
20% and a 100% classification accuracy;[10] a notable difference 
between the reference and this work is the fact that the classi-
fication and regression are done in real-time in this work. The 
output of the real-time classification task is shown in the top 
row of Figure 5b. As shown, the predicted labels for each gas, 
as a function of time, can be classified with only a few mis-
labels. In most cases, the misclassifications occur in the first 
few seconds after the gas is introduced or removed, as shown 
in the case of NO2. The predicted gas concentration is shown 
in the bottom row of Figure 5b; the predicted concentration is 
close in value to the target. In certain cases, the relatively lower 
response of the sensors may result in fluctuations in the real-
time prediction of the concentration (as in the case of CO pre-
dictions); a running average of the response can help obtain 
a more stable reading in real time. For example, as shown in 
Figure S6 (Supporting Information), a running average of  
30 or 60 s can significantly reduce such fluctuations in the  
real-time reading of CO concentration. Finally, the real-time 

outputs shown in Figure 5b are summarized in Figure 5c. As 
shown from the confusion matrix, the overall classification 
accuracy is 97.95% while the average error of the mean pre-
dicted concentrations (versus the true concentrations) is 14%; 
these values are similar to those found in recent literature, 
with the added advantage of being done in real-time in this 
work.[6,10,21]

As expressed in references,[12,16] a one-size-fits-all array that 
can classify all possible gases does not exist because of the 
complex nature of chemical sensing. Thus, gas sensor arrays 
are designed to meet the sensing performance requirements 
set forth, which commonly include low-power and accurate 
detection. With this in mind, Table  1 shows how our con-
structed array compares with other miniaturized gas sensor 
arrays based on the relevant performance and fabrication 
parameters; an extended form of this table is shown in Table S5  
(Supporting Information), comparing other relevant dev
ices.[6,8–11,20,21,27,34,35,36] As shown in these tables, chemiresistive-
type sensors are widely used for multi-transduction arrays. This 
is because they provide high sensitivity and broad selectivity 
ranges that are advantageous for gas sensing. The surveyed 
multi-transduction arrays, in general, use a smaller number of 
sensors and a comparable number of gases are detected. The 
array in this work consumes much less total power than the 
other devices surveyed; we attribute this to the MEMS platform 
used and the local integration techniques. It is noteworthy to 
mention that in many cases, the total power consumption of 
multi-transduction arrays is not specified, and often complex, 
specialized circuity is utilized. The devices in Table  1 (and 
Table S5, Supporting Information) use supervised and non-
supervised machine learning techniques for the classification 
and regression of the target gases. The device in this work 
provides comparable results for the classification (97.95% accu-
racy) and regression (14% average absolute error) as those in 
the references. Additionally, our device estimates concentra-
tions not previously seen during the training (as done in the 
reference),[10] which is thought to represent better real-case 
scenarios. Another advantageous aspect of this work is that the 
detection for gas sensing is done in real-time.[6] Similar to most 
references surveyed, this work utilizes scalable techniques, 
which may allow for more compact or lower power operations. 
In summary, the device shown in this work shows comparable 
or superior performance for most parameters shown in Table 1. 
In this way, the research presented here is expected to con-
tribute to one of the greatest challenges in the gas-sensing field: 
simultaneously achieving high selectivity, accuracy, and sensi-
tivity at low-power operations with favorable response times.

The rational use of nanomaterials and advanced machine 
learning algorithms (and related technologies) have contributed 
to the advancement of other gas sensing-related applications, 
for example, from VOC detection[37] to breath analysis for dis-
ease diagnosis.[38] Similarly, the concept of a multi-transduction 
gas sensor chip, such as that presented in this work, can be 
very powerful for broader gas sensing applications. Concretely, 
by using the properties-specific responses of the constituent 
sensors and a machine learning algorithm, it may be possible 
to build a system that displays the properties of the gas being 
tested, rather than the name of the gas itself. For example, 
the array can output if the gas being detected is reducing or 

Small Methods 2023, 2201352
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 oxidizing, of higher or lower thermal conductivity than the 
air, combustible or noncombustible, etc. For this, a multi-label 
machine learning algorithm could be implemented, where the 
different gas properties are the output labels of the algorithm; 
this is a subject of our future work. By building and consulting 
databases of gas properties,[34] this approach can be very benefi-
cial, as it may help to identify the nature of a gas that the array 
and algorithm have not seen before (i.e., an untrained sample), 
thus, broadening the scope of gases that the gas sensor array 
can detect while preserving the overall good performance 
reported herein.

3. Conclusion

In conclusion, we have developed a multi-transduction, low-
power gas sensing chip for the sensing of flammable and toxic 
gases (H2, NO2, C2H6O, CO, and NH3) at their risk-relevant 
concentrations, and also, with the aid of a machine learning 
algorithm, we could classify and quantify the target gases in 
real-time (classification accuracy of 97.95% and average error of 
the predicted concentration of 14%). The fabricated array, con-
sisting of two calorimetric sensors (catalytic combustion and 
thermal conductivity) and two chemiresistive sensors (N-type 
and P-type), helps address a core issue in gas sensing, that 
is, achieving high selectivity/accuracy while operating at low 
power (7 mW per device). The attained high, real-time accuracy 
can be attributed to the orthogonal responses of the different 
sensors, according to the respective properties of each gas, and 
the utilized machine learning strategy. Meanwhile, the low 
power can be attributed to the low-power MEMS platform and 
the employed local integration synthesis techniques (electro-
deposition and local hydrothermal synthesis), which allow for 
the integration in a small area (9 µm × 110 µm per individual 
sensor). This type of multi-transduction sensor chip with low-
power operation shows great promise for portable, fast, and 
accurate detection of toxic and flammable gases. Moreover, 
a similar machine learning algorithm, but with multi-label 
output, could, in the future, help detect the properties of the 
gas being sensed (e.g., flammable/nonflammable, reducing/
oxidizing, high/low thermal conductivity, etc.), which can help 
to identify the presence of a previously untrained gas.

4. Experimental Section
MEMS Platform Fabrication: The fabrication of the MEMS platform 

onto which all sensors are fabricated (Figure  1a) is described in detail 
elsewhere;[17] In summary, standard photolithographic techniques were 
followed with XeF2 etching used to release the suspended microheaters. 
In this work, the top Au electrodes were modified from previous work,[17] 
that is, to have electrodes for chemiresistive and calorimetric devices on 
the same chip (as shown in Figure 2a).

Temperature Calibration of Microheater: The operating temperature of 
each sensor at 7  mW was estimated. For this, as shown in Figure S3 
(Supporting Information), a tube furnace, a data logger, and a source 
meter were used. Uniform temperature changes in the tube furnace (up 
to 300 °C) were related to resistance changes in the microheater. It was 
compensated for the fact that only the microheater area was heated 
(and not the whole chip). Last, when the microheater acts as an RTD, 
for the catalytic and thermal conductivity sensors, it was useful to know 
quantitatively what temperature changes occur in the heater as a result 
of cooling or combustion; the obtained data and detailed procedure are 
shown in Figure S3 (Supporting Information).

Gas Sensing Measurements: The gas setup consisted of a stainless-
steel chamber in which the chip was connected with pre-positioned 
electrodes and the gas was flown at a constant flow rate of 500 sccm  
using a mass flow controller. The detailed setup was explained 
in the previous work.[17] Here, an external dual output DC power 
supply (Agilent E3646A) was used to power the microheaters of the 
chemiresistive devices while two dual channel source meters (Keithley 
2602B) measured the resistance changes of ZnO, CuO, and the RTDs 
(for the catalytic combustion sensor and the thermal conductivity 
sensor). The responses for the chemiresistive devices are defined 
as Rg/Ra, where Rg is the resistance of the ZnO or CuO sensor in the 
presence of gas and Ra is their resistance in the air. The response 
of the calorimetric sensors is expressed as (Rg −  Ra)/Ra (%), as in 
references,[17,18] where Rg and Ra are the resistances of the RTD (i.e., 
microheater) of the catalytic or thermal conductivity sensor in the target 
gas and in the air, respectively.

Signal Processing: The response of each sensor was analyzed with the 
PCA for clustering and with a supervised machine learning technique 
previously reported,[6] which utilized CNNs and a sliding window for 
real-time classification and regression. The OriginPro 2022 software 
was utilized for PCA and TensorFlow (version 2.7.0) was used for the 
supervised machine learning.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Table 1. Comparison of miniaturized chemiresistive and multi-transduction arrays.

Ref. Sensor type a) Sensors and gases tested Data processing and performance results Scalable integration 
method?c)

CR CC/TC GM No. of 
sensors

No. of  
gases

Total  
power

Analysis 
method b)

Clas-
sification 

(accuracy)

Regression 
[% error, 

MAE]

Untrained 
concentra-

tion?

Real time?

[10] ✓ – – 8 5 340 mW SVM 100% 14.3% ✓ – ✓ CVD + Au seeds

[6] ✓ – – 8 6 88 mW CNN 98.1% 10.15% – ✓ ✓ GLAD + lithography

[21] ✓ – ✓ 2 4 N/R ΔI versus Δfs – ±5 − 20% – – ✓ PMMA tr. + E-beam

[30] ✓ ✓ – 2 1 73 mW – – – – – X Drop casting

This work ✓ ✓ – 4 5 28 mW CNN 97.95% 14% ✓ ✓ ✓ Local hydrothermal 
+ electrodeposition

a)CR = Chemiresistive, CC =  Catalytic Combustion, TC  =  Thermal Conductivity, GM =  Gravimetric;; b)SVM =  Support Vector Machine, CNN =  Convolutional Neural 
 Network;; c)CVD = Chemical Vapor Deposition, GLAD = Glancing Angle Deposition, PMMA tr. = Polymethyl methacrylate- supported transfer.
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