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Toxic and flammable gases pose a major safety risk in industrial settings; thus, portable gas 

sensing of these gases is desired and it requires sensors with fast response speeds, low-power 

consumption, and accurate detection. Herein, we present a low-power, multi-transduction 

array for the accurate sensing of flammable and toxic gases. Specifically, we integrate four 

different sensors on a micro-electro-mechanical-systems platform chip consisting of bridge-
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type microheaters. The four sensors operate based on different transduction mechanisms: 

chemiresistive and calorimetric, i.e., to produce distinct fingerprints for enhanced selectivity. 

We use local, in situ synthesis routes to integrate nanostructured materials (ZnO, CuO, and Pt 

Black) for the sensors on the microheaters. The transient responses of the four sensors are fed 

to a convolutional neural network for real-time classification and regression of five different 

gases (H2, NO2, C2H6O, CO, and NH3). We obtain an overall classification accuracy of 

97.95%, an average regression error of 14%, and a power consumption of 7 mW per device. 

The combination of a versatile low-power platform, local integration of nanomaterials, 

different transduction mechanisms, and a real-time machine learning strategy presented herein 

helps advance the constant need to simultaneously achieve fast, low-power, and selective gas 

sensing of flammable and toxic gases. 

 

 

 

1. Introduction 

Many important but hazardous gases in the industry are toxic and/or flammable. To ensure the 

safety of workers and properties, accurate and portable gas sensing is desired. Accordingly, 

various research approaches have been developed to improve the performance characteristics 

of gas sensors. Specifically, nanomaterials have been synthesized to achieve high sensitivity 

and high selectivity; [1-4] also, micro-electro-mechanical-systems (MEMS) platforms have 

been designed for low-power consumption and fast response speeds;[5] and batch fabrication 

processes have been used to reduce the cost.[6-7] However, it is challenging to achieve all or 

most of the desired performance parameters simultaneously using a single sensor, largely due 

to the cross-sensitivity of a sensor.[1] Thus, research has come to use arrays of different gas 

sensors with a focus on enhancing discrimination performance while attaining a low-power 

consumption, key metrics for an array. 

Recently developed chemiresistive-type gas sensors are made of different metal oxide 

nanomaterials and/or doping with metal nanoparticles on integrated heaters.[3-4,6,8-11] They are 

attractive for gas sensing arrays because each sensor’s selectivity can be tuned and they can 

be miniaturized for low-power consumption.[3-4,6,9-11] However, although good discrimination 

performances have been shown with chemiresistive arrays through rational designs and 

statistical analyses,[8,11] the sensors have broad selectivity, i.e., they respond to many gases; 

this potentially limits the discrimination performance because multiple sensors are 
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contributing similar information about a gas.[12] Combining different transduction 

mechanisms, besides chemiresistive type, is a way to help improve this issue. 

Multi-transduction arrays can show better discrimination performance[13-15] and require less 

number of constituent sensors[14-15] than single transduction arrays; this is due to their 

orthogonal responses to the target gases in the chemical feature space.[12,16] For example, in 

previous work[15] for the detection of contraband food, 19 sensors (comprising 3 different 

transduction mechanisms) were combined in different sub-arrays to compare their 

performance; the results show that the best subset-array of 2 sensors (from two different 

transduction mechanisms) showed better performance than any single-transduction 

combination.  In general, the various types of gas sensors contained in arrays use different 

physicochemical properties of the target analytes, including, combustibility (catalytic 

combustion sensors),[17-18] thermal conductivity,[17,19] mass (gravimetric),[20-22] electrochemical 

properties (electrochemical sensors),[23] light modulation (optical sensors),[16,24] etc.  Which 

type of sensor to combine in a multi-transduction array depends on the specific application, 

selectivity ranges of the constituent sensors,[12] and compatibility of materials and processes. 

Interestingly, the performance of multi-transduction arrays has been reported to increase if we 

combine sensors with different selectivity to the different gases (narrow, medium and broad 

selectivity); here, narrow selectivity indicates a sensor is selective (responsive) to very few 

gases while broad selectivity indicates responsiveness of a sensor to many gases.[12,25] In this 

regard, chemiresistive-type sensors (N-type and P-type) and calorimetric-type sensors 

(thermal conductivity and catalytic combustion) are appropriate candidates for multi-

transduction sensor arrays for low-power, high-accuracy sensing of flammable and toxic 

gases. These sensors show various ranges of selectivity, e.g., chemiresistive sensors have 

wider sensitive ranges than thermal conductivity sensors; additionally, they have the ability to 

be miniaturized[4,17] and require similar circuity, i.e., they monitor resistance changes. Another 

complementary advantage of the chemiresistive and calorimetric sensors is that metal oxides 

perform better at lower gas concentrations (in parts per million, ppm) whereas calorimetric 

sensors perform better at higher concentrations (up to a few percent).[26] However, finding 

compatible fabrication and integration methods for the different sensing materials/catalysts in 

a miniaturized chip is one of the main challenges in fabricating this type of multi-transduction 

arrays. Additionally, to simultaneously achieve low-power consumption, fast response, high 

sensitivity, various sensitivity characteristics of the constituent sensors, and accurate sensing, 

i.e., comparable to modern-day gas sensors and arrays, it is imperative to apply a combination 
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of techniques such as MEMS technology, local integration methods, nanomaterials, and 

machine learning. 

Herein, we present a multi-transduction gas-sensing array composed of four sensors, two 

chemiresistive devices (N-type and P-type) and two calorimetric devices (catalytic and 

thermal conductivity) for accurate and low-power detection of five flammable/toxic gases in 

real-time (with the aid of a machine learning algorithm). Nanostructured metal oxides for the 

chemiresistive devices (and a noble metal catalyst for the catalytic sensor) are integrated on a 

MEMS platform via successive, compatible localized synthesis methods (local hydrothermal 

synthesis[4,7] and local electrodeposition).[17] This fabrication strategy allows for the 

integration of the nanomaterials in a very small area and helps to simultaneously achieve low-

power consumption, fast response, and high sensitivity. Compared to other miniaturized 

chemiresistive and multi-transduction arrays in previous studies, the device fabricated in this 

work has the scalability of the fabrication process and also can be driven with very low power 

consumption.[10,6,21, 27] The constituent sensors in the array were selected to display various 

sensitivity characteristics depending on the properties of the target gases, which contribute to 

accurate gas sensing. We justified the selected combination of the constituent sensors by 

using principal component analysis (PCA). As non-supervised learning techniques do not 

allow for real-time detection, we have implemented a machine learning technique based on 

convolutional neural networks (CNNs) and a transient sliding window for real-time 

classification and quantification (regression) of the different gases,[6] achieving gas 

identification in real-time even using the response data at the specific concentration not used 

for training the network. 

 

2. Results and discussion 

2.1. Description of the fabricated array and sensing strategy 

Figure 1 shows an overview of the work reported herein: a schematic representation of the 

multi-transduction gas sensing array (Figure 1a), optical microscope images of the fabricated 

array consisting of the 4 sensors (Figure 1b), scanning electron microscope images of the 

locally-synthesized nanomaterials (Figure 1c), and the gas sensing strategy utilized for the 

accurate sensing of flammable and toxic gases (Figure 1d). As shown in Figure 1a-b, all 

sensors consist of identical bridge-type microheaters with small active areas of 9 μm × 110 

μm (per individual sensor) for fast responses and low-power operations (7 mW per device). 

For the calorimetric sensors, the resistances of the microheaters are recorded as they change in 

response to a target gas, while in the case of chemiresistive sensors (CuO nanosheets for the 
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P-type sensor and ZnO nanowires for the N-type), the resistances of the nanomaterials are 

recorded as they change in response to a target gas; thus, for the calorimetric devices, the 

microheaters also act as resistive temperature detectors (RTDs). The calorimetric devices 

have Au electrodeposition electrodes on top of the microheater, which allow the 

electrodeposition of the catalyst (nanostructured Pt Black) for the catalytic combustion sensor; 

the thermal conductivity sensor does not have any nanomaterial integrated and the electrode is 

fabricated to match the thermal characteristics of the catalytic combustion sensor (this helps 

distinguish when an atmosphere is flammable as explain hereinafter). Both calorimetric 

sensors react to thermal conductivity changes in an environment but the catalytic combustion 

sensor also experiences an increase in resistance if a flammable gas is combusted on the 

surface of the catalyst (indicating the presence of a flammable gas/atmosphere). On the other 

hand, the chemiresistive devices have pairs of Au electrodes (with a 3 µm gap) to sense the 

resistance changes of the nanomaterials above them. The integration of the sensing layers 

(CuO and ZnO) and nanocatalysts (Pt Black) on these small areas of the microheaters is 

achieved by the use of successive, compatible local synthesis processes, i.e., local 

hydrothermal synthesis[4,7] for CuO and ZnO and local electrodeposition for Pt Black.[17]. 

Using the transient response of each constituent sensor, Figure 1d shows an overview of the 

machine learning strategy used for real-time classification and regression. Specifically, a 5-

second-sliding window for each of the responses is used to build a tensor that gets passed to a 

CNN architecture, ultimately outputting the gas class (gas type) and regression values 

(concentration) in real-time. 

Based on their flammability limits and levels of toxicity, the hazardous gases studied herein 

(H2, NO2, C2H6O, CO, and NH3) have different risk-relevant concentrations as presented in 

Table S1; here, we test concentrations for each gas below its flammability range or 

permissible exposure limit, whichever of the two is lower for a particular gas. Figure S1 

shows the constituent sensors of the fabricated array and their cross-sensitivity to each of the 

tested gases. The sensors in the array were fabricated to have these various ranges of 

selectivity for the different gases because having different selectivity ranges in an array helps 

to achieve better discrimination performance.[12,25] 

 

2.2. Device fabrication: MEMS platform and Localized, in situ synthesis of 

nanomaterials 

Each nanomaterial is synthesized locally on the low-power MEMS platform (Figure 2a). To 

fabricate the multi-transduction arrays, not only the calorimetric-type sensors but also the 
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chemiresistive-type sensors should be integrated into the device. The local syntheses 

(integration techniques) of the nanomaterials follow four basic sequential steps as shown in 

Figure 2b–e. The first step consists of sputtering SnO2 seeds on the entire chip. This plants the 

seeds for the subsequent growth of the metal oxides (CuO and ZnO) in steps 3 and 4. Before 

growing the metal oxides, the Pt nanostructures are grown in situ via electrodeposition with 

0.1% platinic acid (with 0.005% lead acetate); this is a modified version of our previous work 

to avoid etching of the sputtered seeds.[17] The Pt in the platinic acid is generally reduced from 

platinum (IV) to platinum (II) and then to platinum (0) or directly from platinum (IV) to 

platinum (0).[28] Through an electric field, the metal complexes PtIVCl6
2- or PtIICl4

2- approach 

to the cathode, and the reduction of the Pt is conducted through an ad-atom mechanism.[29] 

The synthesized Pt nanostructures by electrodeposition have pseudo-porous structure with 

interconnected sphere-like protrusions of approximately 40~110 nm.[17] Since the pseudo-

porous structure facilitates the target gases to diffuse easily and provides high thermal 

conductivity to the embedded RTD easily, this structure is advantageous for gas sensing. For 

the chemiresitive type sensors, ZnO and CuO were used in this work, and these 

semiconducting materials can react with the gases at high-temperature conditions (above 

150℃). To generate the high-temperature conditions (about 250℃), the metal oxides were 

integrated on the microheaters. Their sensing mechanism is based on their resistance change 

in the presence of a target gas that is explained by the removal or coverage of oxygen ions (O- 

and O2-) from the surface of the metal oxide.[4] Due to the sensing mechanism of the 

chemiresisitve type sensors, it is important to increase the surface-to-volume ratio of the 

sensing materials for improved sensing performance. Therefore, the local hydrothermal 

synthesis method was selected to locally integrate the metal oxide sensing materials with a 

large surface area on the bridge-type microheater. In steps 3 and 4, ZnO nanowires and CuO 

nanosheets are grown, respectively. By putting a Polydimethylsiloxane (PDMS) well on top 

of the chip, we can deposit a small volume of the ZnO or CuO precursor solution to later grow 

the nanostructures of each material in situ when Joule heating is applied to the submerged 

microheater. When an electrical voltage was applied to the microheater in the ZnO or CuO 

precursor solution, convective mass transfer of precursor solution was generated by a 

localized temperature rise via the Joule heating.[4,30] The nanostructured ZnO and CuO could 

be integrated on the microheater by endothermal reaction of precursor chemicals, and the 

fresh precursor could be supplied to the microheater by the convective mass transfer.[4] 

Finally, the ZnO nanowires and CuO nanosheets with large surface-to-volume ratios were 

successfully integrated on the microheater. Table S2 lists the metal salts and other parameters 
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for these hydrothermal growth processes. Finally, by using the developed local integration 

techniques, chemiresistive-type and calorimetric-type sensors could be used in the same 

device, unlike the previous works.[4,7,17,30] The crystalline characteristics of the Pt black are 

well described in our previous work,[17] and through the X-ray diffraction (XRD) analysis, it 

was confirmed that highly crystalline structures of ZnO nanowires and CuO nanosheets were 

well synthesized by the hydrothermal method (Figure S2). 

It is noteworthy to mention that, during the fabrication, the order for the integration of each 

nanomaterial is important. The sequence for the integration of the nanomaterials (as in Figure 

2) was established by studying the compatibility of the different nanostructures to the 

different precursors; for example, Table S3 shows that it is important to sputter the SnO2 

nanoparticles before the electrodeposition of the Pt black because the sputtered particles 

decrease the performance of the catalytic sensor if done after synthesis of the Pt catalyst. 

Similarly, the CuO precursor can etch away the ZnO nanowires if they are immersed for a 

long time. Thus, the sequence in Figure 2 and the parameters in Table S2 ensure compatibility 

in the fabrication of the array through the use of these local integration techniques for small-

area integration of metal oxides and catalyst material. 

 

2.3. Gas sensor responses and operating temperature 

Figure 3a shows the transient responses of all four sensors tested simultaneously to the five 

different toxic/flammable gases. As summarized in Figure 3b, the magnitude and direction of 

the responses for all the sensors are different for most gases, constituting a unique 

“fingerprint” for each gas, favorable for gas identification. The trend and magnitude of each 

response correspond to how each sensor reacts to a particular gas. First, in the case of 

catalytic combustion sensor, the H2 gas is locally combusted by the Pt-black catalyst.[17] This 

local combustion increases the temperature of the microheater, and thus the resistance of the 

underlying heater increases. On the other hand, in the case of thermal conductivity sensor, the 

local combustion can not occur because there is no catalyst for combustion. Instead, since H2 

gas has higher thermal conductivity compared to the air, H2 gas causes a cooling effect on the 

thermal conductivity sensor. As a result, the resistance of conductivity sensor decreases. In 

the case of C2H6O and NH3 gases, the resistance of both the catalytic combustion and thermal 

conductivity sensor decrease because they do not cause the catalytic combustion but have 

higher thermal conductivity than the air. On the other hand, since NO2 and CO gases have 

similar thermal conductivities to air at the operating temperature of the sensors, it is hard to 

see the response of the catalytic combustion and thermal conductivity sensor to those gases. 
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For the chemireisitive type sensors, the oxygen ions are chemisorbed on the surface of the 

metal oxide in the high-temperature conditions above 150℃ and produce different effects on 

N-type and P-type metal oxides.[4,31] For the N-type metal oxide, the adsorbed oxygens pull 

electrons from the metal oxide, which generates the electron depletion layer. On the other 

hand, for the P-type metal oxide, a hole accumulation layer is generated by the adsorbed 

oxygens. Therefore, under reducing gas conditions, the adsorbed oxygen on the N-type metal 

oxide reacts with the reducing gases, and in this process, electrons are supplied to the N-type 

metal oxide, which reduces the resistance of the N-type metal oxide. In contrast, under 

oxidizing gas conditions, the resistance of the N-type metal oxide increases because the 

electron depletion layer increases due to the deprivation of the electron in the reaction 

process. The opposite phenomenon occurs in the resistance change of the P-type metal oxide 

since the major carrier of the P-type metal oxide is the hole. In this wok, for the chemireisitive 

type sensors, ZnO (N-type) and CuO (P-type) were used, and they were integrated on the 

microheaters to generate the high temperature condition (about 250℃). Since the ZnO is N-

type metal oxide, the responses of the ZnO sensor were smaller than 1 to the reducing gases 

(H2, C2H6O. CO, and NH3) and larger than 1 to the oxidizing gas (NO2). On the other hand, 

the responses of the CuO sensor showed the opposite tendency because the CuO is a P-type 

metal oxide. This property-specific response in each sensor is beneficial for gas sensing as we 

aim to combine sensors that respond differently to each gas in the chemical feature space.[12] 

After performing a temperature calibration of the chip (shown in Figure S3), the surface 

temperature of the microheaters at 7 mW is estimated to be 252 °C.  This operating power 

was chosen because it yields the maximum sensitivity for all constituent sensors with good 

reliability for the platform.[4,17] Furthermore, from the calibration, it was also found that for 

the calorimetric sensors, the temperature change per resistance change is 21.17°C/Ω, e.g., 

during the exposure of 1.6% H2, the temperature increases by ~12°C for the catalytic 

combustion sensor and it decreases by ~2°C for the thermal conductivity sensor. 

 

2.4. Analysis of possible sensor combinations and discrimination performance 

As shown in Figure 4a, we performed PCA with all possible combinations of the four 

constituent sensors to evaluate their discrimination performance with cluster analysis; the 

subarrays included combinations of 2 sensors, 3 sensors, and 4 sensors. When the response 

data of only two types of sensors were used, the cluster analysis should be conducted in the 

2D plane. Therefore, in this work, the PCA for reduction of dimension was conducted even 

when response data of three and four types of sensors were used to compare the analysis 
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results in the same criteria. Given the limited number of sensors and target gases, it is difficult 

to draw broad conclusions; however, several inferences can be drawn from this work, 

consistent with similar analyses done in previous literatures.[12,14-15] Most importantly, the best 

discrimination performance of an array is when all four sensors are utilized; this indicates that 

based on the properties of the target gases, the 4-sensor array (with all sensors) helps to 

discriminate their presence. On the other hand, by looking at the 2-sensor array combinations, 

we can see that single mode (or transduction) arrays do not perform well as they have a high 

degree of linearity (only one gas is clustered in this case); on the contrary, a dual-mode 2-

sensor array, combining a CuO sensor (with broad selectivity) and the thermal conductivity 

sensor (narrower selectivity), shows very good results with 4 out of 5 gases clustered. The 

PCA plots for all combinations of 2-sensor arrays and 3-sensor arrays are shown in Figure S4 

and Figure S5, respectively. The results in Figure 4 are consistent with previous studies where 

the combination of broadly selective and narrowly selective sensors shows superior 

discrimination performance, even though the number of sensors is lower than other 

combinations.[12,25] Specifically, similar to findings in previous research,[15,25] Figure 4a shows 

that, in some cases, a lower number of sensors ( e.g., 2-sensor arrays) may yield higher 

discriminating performance, especially if there exist highly correlated sensors and/or sensors 

with lower sensitivity in arrays that combine higher numbers of sensors like the first case of 

the 3-element array where only one cluster is not overlapping with other gases (as shown in 

Figure S5). 

The PCA of the first 2 principal components and first 3 principal components of the 4-sensor 

array (the best array combination) are plotted in Figure 4b–c, respectively. As shown, PCA 

can cluster all five gases; however, as the concentration of each gas lowers, they converge to a 

common point and it may be harder to identify lower concentrations of a gas. Even if the 

target gases may be classified well using a cluster classification algorithm (LDA or SVM) 

with a small number of sensors without reduction of the dimension using PCA, in the case of 

real-time gas identification, these algorithms may fail to classify the target gases due to 

limitations in decoding performances. For these reasons, CNNs are used in this research to 

help with real-time classification and regression. 

 

2.5. Real-time classification and regression with CNNs 

CNNs have been traditionally used for image processing; they have also been applied to gas 

sensing applications.[32-33] However, in those studies, transient responses were not considered 

and thus real-time detection was not possible. In Figure 5a, we show the data processing 
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strategy used herein to identify the target gases and quantify the concentrations of the gases in 

real-time using the four signals of the sensors. As shown in Figure 3a, there were transient 

regions for a quite long time because the responses of the sensors did not saturate immediately 

after the target gas injection. To perform the real-time gas identification, it is essential to be 

able to classify the target gases and predict the concentration values of the gases even in the 

transient region. Therefore, in this work, a 5-second-sliding window was used to utilize the 

gradient information in the transient region, and the network structure was similarly designed 

to the real-time classification and regression algorithms previously published using a sliding 

window and CNNs.[6] In this work, a 5-second-sliding window was used to record the 

transient responses of all four sensors and the input data to the algorithm was built in the form 

of a tensor; the transient responses were sampled, simultaneously, at a rate of 2 Hz. For the 

gas identification, one-hot encoding and normalization were used to provide the algorithm 

with the true labels for the gas types and concentrations, respectively. In the gas tests, the gas 

concentration ranges were different depending on the target gas. If the concentration values of 

some specific gases are larger than those of other gases, there is a concern that the weight for 

predicting the specific gas concentration values can be greater than those of other gases in the 

network. Therefore, to prevent the CNNs from being biased against the specific gases in 

predicting the gas concentration due to the different concentration ranges of the target gases, 

the maximum gas concentration value used in the learning network for each target gas was 

normalized to 10 for the regression task. The pre-processed sensor signals were put into a 4 × 

10 tensor, where every 0.5 s a new window was formed. The (n, 4, 10) windows were filtered 

by a 2D convolutional layer of size 4 × 5 every 2.5 s, i.e., to extract features in the tensor 

built; this layer was followed by a batched normalization layer. The output of the filter was 

passed to two consecutive fully connected layers of sizes 20 and 10, respectively, both with 

Rectified Linear Unit (ReLU) activation layers and followed by batch normalization layers. 

Finally, as there are six gases (including air), the final output layer has six nodes for 

classification and an additional node was used for the regression task. 
From the total transient responses presented in Figure 3a, we have divided 60% of the data for 

training, 20% for validation and the remaining 20% for testing (Table S4). As shown in Table 

S4, we aim to predict concentrations not previously seen during the training; these estimations 

represent more realistic scenarios encountered in normal operations. It is noteworthy to 

mention that these intermediate concentration estimations are more challenging to perform; 

such estimation has been previously reported in the literature with overall regression errors 

below 20% and a 100% classification accuracy;[10] a notable difference between the reference 
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and this work is the fact that the classification and regression are done in real-time in this 

work.  The output of the real-time classification task is shown in the top row of Figure 5b. As 

shown, the predicted labels for each gas, as a function of time, can be classified with only a 

few mislabels. In most cases, the misclassifications occur in the first few seconds after the gas 

is introduced or removed, as shown in the case of NO2. The predicted gas concentration is 

shown in the bottom row of Figure 5b; the predicted concentration is close in value to the 

target. In certain cases, the relatively lower response of the sensors may result in fluctuations 

in the real-time prediction of the concentration (as in the case of CO predictions); a running 

average of the response can help obtain a more stable reading in real-time. For example, as 

shown in Figure S6, a running average of 30 s or 60 s can significantly reduce such 

fluctuations in the real-time reading of CO concentration. Finally, the real-time outputs shown 

in Figures 5b are summarized in Figure 5c. As shown from the confusion matrix, the overall 

classification accuracy is 97.95% while the average error of the mean predicted 

concentrations (versus the true concentrations) is 14%; these values are similar to those found 

in recent literature, with the added advantage of being done in real-time in this work.[6,10,21] 

As expressed in references,[12,16] a one-size-fits-all array that can classify all possible gases 

does not exist because of the complex nature of chemical sensing. Thus, gas sensor arrays are 

designed to meet the sensing performance requirements set forth, which commonly include 

low-power and accurate detection. With this in mind, Table 1 shows how our constructed 

array compares with other miniaturized gas sensor arrays based on the relevant performance 

and fabrication parameters; an extended form of this table is shown in Table S5, comparing 

other relevant devices.[6,8-11,20-21,34-37] As shown in these tables, chemiresistive-type sensors are 

widely used for multi-transduction arrays. This is because they provide high sensitivity and 

broad selectivity ranges that are advantageous for gas sensing. The surveyed multi-

transduction arrays, in general, use a smaller number of sensors and a comparable number of 

gases are detected. The array in this work consumes much less total power than the other 

devices surveyed; we attribute this to the MEMS platform used and the local integration 

techniques. It is noteworthy to mention that in many cases, the total power consumption of 

multi-transduction arrays is not specified, and often complex, specialized circuity is utilized. 

The devices in Table 1 (and Table S5) use supervised and non-supervised machine learning 

techniques for the classification and regression of the target gases. The device in this work 

provides comparable results for the classification (97.95% accuracy) and regression (14% 

average absolute error) as those in the references. Additionally, our device estimates 

concentrations not previously seen during the training (as done in the reference),[10] which is 
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thought to represent better real-case scenarios. Another advantageous aspect of this work is 

that the detection for gas sensing is done in real-time.[6] Similar to most references surveyed, 

this work utilizes scalable techniques, which may allow for more compact or lower power 

operations. In summary, the device shown in this work, shows comparable or superior 

performance for most parameters shown in Table 1. In this way, the research presented here is 

expected to contribute to one of the greatest challenges in the gas-sensing field: 

simultaneously achieving high selectivity, accuracy, and sensitivity at low-power operations 

with favorable response times. 

The rational use of nanomaterials and advanced machine learning algorithms (and related 

technologies) have contributed to the advancement of other gas sensing-related applications, 

e.g., from VOC detection[38] to breath analysis for disease diagnosis.[39] Similarly, the concept 

of a multi-transduction gas sensor chip, such as that presented in this work, can be very 

powerful for broader gas sensing applications. Concretely, by using the properties-specific 

responses of the constituent sensors and a machine learning algorithm, it may be possible to 

build a system that displays the properties of the gas being tested, rather than the name of the 

gas itself. For example, the array can output if the gas being detected is reducing or oxidizing, 

of higher or lower thermal conductivity than the air, combustible or noncombustible, etc. For 

this, a multi-label machine learning algorithm could be implemented, where the different gas 

properties are the output labels of the algorithm; this is a subject of our future work. By 

building and consulting data bases of gas properties, [35] this approach can be very beneficial, 

as it may help to identify the nature of a gas that the array and algorithm have not seen before 

(i.e., an untrained sample), thus, broadening the scope of gases that the gas sensor array can 

detect while preserving the overall good performance reported herein. 

 

3. Conclusion 

In conclusion, we have developed a multi-transduction, low-power gas sensing chip for the 

sensing of flammable and toxic gases (H2, NO2, C2H6O, CO, and NH3) at their risk-relevant 

concentrations, and also, with the aid of a machine learning algorithm, we could classify and 

quantify the target gases in real-time (classification accuracy of 97.95 % and average error of 

the predicted concentration of 14 %). The fabricated array, consisting of two calorimetric 

sensors (catalytic combustion and thermal conductivity) and two chemiresistive sensors (N-

type and P-type), helps address a core issue in gas sensing, i.e., achieving high 

selectivity/accuracy while operating at low power (7 mW per device). The attained high, real-

time accuracy can be attributed to the orthogonal responses of the different sensors, according 
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to the respective properties of each gas, and the utilized machine learning strategy. 

Meanwhile, the low power can be attributed to the low-power MEMS platform and the 

employed local integration synthesis techniques (electrodeposition and local hydrothermal 

synthesis), which allow for the integration in a small area (9 μm × 110 μm per individual 

sensor). This type of multi-transduction sensor chips with low-power operation shows great 

promise for portable, fast, and accurate detection of toxic and flammable gases. Moreover, a 

similar machine learning algorithm, but with multi-label output, could, in the future, help 

detect the properties of the gas being sensed (e.g., flammable/nonflammable, 

reducing/oxidizing, high/low thermal conductivity, etc.), which can help to identify the 

presence of a previously untrained gas. 

 

4. Methods 

MEMS platform fabrication: The fabrication of the MEMS platform onto which all sensors 

are fabricated (Figure 1a) is described in detail elsewhere;[17] In summary, standard 

photolithographic techniques were followed with XeF2 etching used to release the suspended 

microheaters. In this work, the top Au electrodes were modified from previous work, [17] i.e., 

to have electrodes for chemiresistive and calorimetric devices on the same chip (as shows in 

Figure 2a). 

Temperature calibration of microheater: We have estimated the operating temperature of 

each sensor at 7 mW. For this, as shown in Figure S3, we used a tube furnace, a data logger, 

and a source meter. Uniform temperature changes in the tube furnace (up to 300○C) were 

related to resistance changes of the microheater. We compensated for the fact that only the 

microheater area is heated (and not the whole chip). Lastly, when the microheater acts as an 

RTD, for the catalytic and thermal conductivity sensors, it is useful to know quantitatively 

what temperature changes occur in the heater as a result of cooling or combustion; the 

obtained data and detailed procedure are shown in Figure S3. 

Gas sensing measurements: The gas setup consists of a stainless steel chamber in which the 

chip is connected with pre-positioned electrodes and the gas is flown at a constant flow rate of 

500 sccm using a mass flow controller. The detailed setup is explained in our previous 

work.[17] Here, an external dual output DC power supply (Agilent E3646A) was used to power 

the microheaters of the chemiresistive devices while two dual channel source meters 

(Keithley 2602B) measured the resistance changes of ZnO, CuO, and the RTDs (for the 

catalytic combustion sensor and the thermal conductivity sensor). The responses for the 

chemiresistive devices are defined as Rg/Ra, where Rg is the resistance of the ZnO or CuO 
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sensor in the presence of a gas and Ra is their resistance in air. The response of the 

calorimetric sensors is expressed as (Rg - Ra)/Ra [%], as in references,[17-18] where Rg and Ra 

are the resistances of the RTD (i.e., microheater) of the catalytic or thermal conductivity 

sensor in the target gas and in the air, respectively. 

Signal processing: The response of each sensor was analyzed with the PCA for clustering and 

with a supervised machine learning technique previously reported,[6] which utilizes CNNs and 

a sliding window for real-time classification and regression. The OriginPro 2022 software was 

utilized for PCA and TensorFlow (version 2.7.0) was used for the supervised machine 

learning. 

 

Supporting Information  

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Overview of the multi-transduction gas sensor array for real-time gas sensing. (a) 
Schematic representation of the constituent sensors in the array, including exploded views of 
the layers (sides). (b) Optical microscope images of fabricated array with all sensing materials 
synthesized. (c) Scanning Electron Microscope (SEM) images of the fabricated nanomaterials 
on their respective microheaters; the thermal conductivity sensor does not carry any 
nanomaterial and the bare microheater beam is shown here. (d) Overview of the machine 
learning strategy, whereby transient responses are processed for real-time classification and 
regression. 
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Figure 2. Overview of the fabrication process (integration of nanomaterials). (a) top view of 
the chip. (b) Step 1 consists of depositing SnO2 seed layer for eventual hydrothermal growth. 
(c) The nanostructured Pt Black is synthesized via electrodeposition (the solution does not 
affect the seed layer). (d) Local hydrothermal growth of ZnO nanowires using joule heating. 
(e)  Local hydrothermal growth of CuO nanosheets using joule heating. In steps 2–4, rinsing 
in acetone and ethanol is performed between steps and at the end. 
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Figure 3. (a). Dynamic responses of the chemiresistive sensors (CuO and ZnO) and the 
calorimetric sensors (catalytic combustion and thermal conductivity) to the exposure of risk-
relevant concentrations of H2, NO2, C2H6O, CO and NH3. (b) Summary of the responses of 
the four sensors shown in part (a); the chemiresistive sensors have the same definition for 
their response (left axis), as do the calorimetric sensors (right axis). 
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Figure 4.  (a) Results of combining all possible combinations of the four constituent sensors 
for sub arrays of 2 sensors, 3 sensors and all four sensors; the bar chart on the right shows the 
number of non-overlapping clusters (with PCA) to identify the five gases. The array with four 
sensors performs best, clustering all of the gases tested. (b)-(c) Projection of the four-
dimensional responses of the 4-sensors array for (b) the first 2 principal components and (c) 
for the first 3 principal components. 
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Figure 5. (a) Data processing strategy to identify and quantify the concentrations of target 
gases in real-time using the four sensor signals. (b) Real-time output (over time) of the 
classification task (top row) and regression task (bottom row). (c) (left) Confusion matrix of 
the classification task showing high classification accuracy (> 94%) for all gases, with an 
overall accuracy of 97.95%; (right) percent error of the regression task for each gas, showing 
an overall average error of 14 percent. 
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Table 1. Comparison of miniaturized chemiresistive and multi-transduction arrays 

Ref. 
Sensor type a Sensors and gases tested Data processing and performance results 

Scalable integration 
method? c  CR CC/ 

TC GM   No. of 
sensors 

No. of 
gases 

Total 
power   Analysis 

method b 
Classification 

(accuracy) 
Regression 

(% error, MAE) 
Untrained 

concentration? 
Real 
time?  

10 ✔ - - 8 5 340 mW SVM 100% 14.3% ✔ - ✔ CVD + Au seeds 
6 ✔ - - 8 6 88 mW CNN 98.1% 10.15% - ✔ ✔ GLAD + lithography 

21 ✔ - ✔ 2 4 N/R ΔI vs. Δfs - ± 5- 20% - - ✔ PMMA tr.+ E-beam 
30 ✔ ✔ - 2 1 73 mW - - - - - X Drop casting 

This 
work ✔ ✔ - 4 5 28 mW CNN 97.95% 14% ✔ ✔ ✔ Local hydrothermal + 

electrodeposition 
a CR = Chemiresistive; CC = Catalytic Combustion; TC = Thermal Conductivity; GM = Gravimetric.  
b SVM = Support Vector Machine; CNN = Convolutional Neural Network. 
c CVD = Chemical Vapor Deposition; GLAD = Glancing Angle Deposition; PMMA tr. = Polymethyl methacrylate- supported transfer.  
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A low-power, multi-transduction nanosensor array is demonstrated by integrating 
nanostructured materials on bridge-type microheaters for accurate sensing of flammable and 
toxic gases. The nanosensor array operates based on chemiresistive and calorimetric 
mechanisms for enhanced selecitivity. By applying transient responses of the nanosensor array 
to a convolutional neural network, it is possible to accurately identify flammable and toxic gases 
in real-time.  
 

Dionisio V. Del Orbe Henriquez§, Mingu Kang§, Incheol Cho, Jungrak Choi, Jaeho Park, 

Osman Gul, Junseong Ahn, Dae-Sik Lee*, and Inkyu Park* 
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Table S1. Flammability ranges and permissible exposure limits (PEL) for representative gases that are nontoxic, 
toxic, and of low toxicity.  LEL is the lower explosive limit while UEL is the upper explosive limit. 

Toxicity Gas Flammability range 
(LEL - UEL) 

OSHA Permissible 
Exposure Limit (PEL) 

Nontoxic H2 4.0% – 75% N/A 

Low Toxicity Ethanol 3.3 – 19% 1000 ppm 

Toxic 

CO 12.5 – 74.0% 50 ppm 

NO2 N/A (nonflammable) 5 ppm 

NH3 15-28% 50 ppm 
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Figure S1. Cross-sensitivity of catalytic combustion, chemiresistive and thermal conductivity gas sensors to 
flammable and toxic gases with zero to high toxicity. Note that at the tested concentrations for ethanol (and at 
the low operating power of the sensor), combustion is not expected to occur. The units of gas concentration 
displayed above each gas category (ppth, %, and ppm) represent the risk-relevant concentration of concern for 
each gas group based on their relevant risk of toxicity and/or flammability. 
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Table S2. Parameters for the local hydrothermal syntheses of the ZnO nanowires and the CuO nanosheets 

 ZnO Nanowires CuO Nanosheets 
Sputtering 

(target / power / time) SnO2 target / 150W / 3 minutes for seed layer 

Precursor solution 
(in deionized water) 

 
25 mM Zn(NO3)2·6H2O 

25 mM HMTA† 
6 mM PEI§ 

 

4 mM Cu(NO3)2·xH2O 
4 mM HMTA† 

Joule-heating Parameters 
(power / time) 45 mW / 10 min 45 mW / 1 min 

Synthesized structures 
on microheaters 

 

 
 

 

† HMTA = Hexamethylenetetramine 
§ PEI = Polyethylenimine 
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Table S3. Compatibility of synthesis processes and existing structures 
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Figure S2. X-ray diffraction (XRD) patterns of (a) ZnO nanowires and (b) CuO nanosheets synthesized by the 

hydrothermal method. 
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Figure S3. Sequence for the calibration of the microheater using a tube furnace; the ultimate goal of this 
calibration is to estimate the surface temperature of the microheater as a function of resistance changes and input 
heating power. In detail, the figures show (a) the experimental setup; (b) transient resistance and temperature 
values during heating in the furnace; (c) resistance of the microheater versus the temperature of the furnace 
during the heating in panel “(b)” of this figure (here, the resistance of the microheater was corrected to only 
include the ΔR from the 9 μm × 110 μm area of the microheater, analogous to the area heated during Joule 
heating, i.e., excluding the lead resistance effect); (d) resistance of the microheater with input power applied  
(Joule heating-induced resistance increases); (e) swapped axes from panel “(c)” to show the changes of 
temperature with resistance changes (this helps us estimate temperature changes from catalytic combustion or 
thermal conductivity based on the output resistance changes of calorimetric sensors); (f) derived equation for the 
temperature of the microheater as a function of input power using panels “(c)” and “(d)”; this relation helps us 
estimate the operating temperature of the microheater. 
  



  

30 
 

 
Figure S4. PCA of all the possible 2-sensor array combinations. In general, dual transduction arrays where the 
constituent sensors have different ranges of sensitivity have better discrimination performance (e.g., arrays #5 
and #6). Single transduction arrays have poorer discrimination performance due to their high degree of 
collinearity (e.g., arrays 1 and 2). 
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Figure S5. PCA of all the possible 3-sensor array combinations. Most arrays perform similarly (3/5 non-
overlapping clusters); The inclusion of the CuO sensor improves the discrimination performance due to its wide 
sensitivity range to different gases.  
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Figure S6. Application of a running average to the real-time prediction of CO concentration in the machine 
learning strategy in Figure 5. (a) The original output from the real-time estimation of the concentration; the 
actual exposed concentration (ground truth) of CO is 20 ppm. (b) Results of applying a running average of 30 s 
(b) and 60 s (c) to the original output in (a), showing significant improvement in the stability of the estimated 
concentration in real-time  
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Table S4. List of tested concentrations in Figure 3 (of manuscript) and the distribution of each gas cycle in the 
data set for training, validation and testing.  

  

Data Set H2 
(%) 

NO2 
(ppm) 

Ethanol 
(ppm) 

CO 
(ppm) 

NH3 
(ppm) 

Interval 1 Training 0.1 1 25 2 0.5 
Interval 2 Validation 0.2 2 50 5 1 
Interval 3 Training 0.5 3 100 10 2 
Interval 4 Test 1 4 200 20 3 
Interval 5 Training 1.6 5 400 50 4 
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Table S5. Extended Table 1 (in manuscript) for comparison of chemiresistive (green region) and multi-transduction (blue region) arrays. 

*  CR: Chemiresistive; CC: Catalytic Combustion; TM: Thermal; GM: Gravimetric; OT: Other.   
**  This talks about the technique itself, not if the devices would provide acceptable or better performance once miniaturized.  
-  Not done/considered in the study 
N/R Not reported 
2 in 1 means that two devices were stacked in one structure and they function together while providing different output signal.  
§ Other mechanism: FET and external Si photodiode  
§§ Other mechanism:  Capacitive  
✔ Yes 
X No 

Ref. 

Features 
considered 

(sensing 
material, 

modulation, 
transduction) 

# of 
transduction 
mechanisms 

Total Power # of 
sensors 

# of 
test 

gases 

Sensor type (Transduction mechanism) * 
Supervised 
learning? 

Learning 
algorithm / Data 
analysis method 

Classificatio
n Accuracy 

Regression 
Error 
(Mean 

Absolute 
Error) 

Real- time? 
Intermediate 
concentration 

estimated? 

Scalable integration 
techniques ** 

CR CC TM GM OT 

Thai et al. 
(2020)[1] 

Sensing 
material + 

temperature 
gradient  

1 340 mW 8 5 ✔ 

N/A 
(all are resistive-type). 

✔ SVM (non real-
time) 100% 14.3% - ✔ ✔ CVD + Au seeds 

Tonezzer et 
al. (2019)[2] 1 

N/R 
(external 
heater) 

5 7 ✔ ✔ SVM (non real-
time) 94.3% 18.4% - - ✔ CVD + Au seeds 

Acharyya et 
al. (2020)[3] 1 

N/R 
(external 
heater) 

4 4 ✔ ✔ 

Random forrest, 
SVM, naive bayes 
(NB), multilayer 

perceptron (MLP)   

100% < 10%   - ✔ Hydrohtermal 
method 

Lee et al. 
(2005)[4] 

Sensing 
material 

1 400 mW 4 4 ✔ ✔ Neural network 95% - - - ✔Thermal evaporation 
+ shadow mask 

Pineau et al. 
(2018)[5] 1 

N/R 
(assumed 

high – Not 
MEMS) 

3 3 ✔ - 
multivariate linear 

regression 
(MVLR) 

Clear clusters 

6.6% 
(average 
error for 

ammonia) 

- Possible 
(analytically). 

✔ Flame spray 
pyrolysis (FSP) + 
shadow mask 

Kang et al. 
(2022)[6] 1 88 mW 8 6 ✔ ✔ 

CNN (real-time 
with sliding 

window) 
98.1% 10.15% ✔ - ✔ GLAD (sputtering) 

+ lithography 

Güntner et 
al. (2016)[7] 1 120 mW 

(suspended) 4 4 ✔ - MVLR - < 10% in 
mixtures  - Possible 

(analytically). 

✔Flame spray 
pyrolysis (FSP) + 
shadow mask 

Wang et al. 
(2012)[8] 

Dual 
transduction 2 N/R 2 1 - - - - ✔§ - - - 

(1 gas tested) - - - ✔ Thermal evaporation 
+ shadow mask 

Gao et al. 
(2019)[9] 

Dual 
transduction; 
single sensor 

2 
N/R 

(specialized 
circuitry) 

2 in 1† 5 ✔ - - ✔ - - 
Mapping to the 
ΔR/ R0 vs. Δf 

parameter space 

Clear clusters 
 

Seems small 
(from 

repetitive 
tests) 

Possible 
(non 

supervised 
identificatoi

n plaen)  

- 

✔ Sputtering 
(resonator). 
X Drop casting 
(resistive) 

Chen et al. 
(2016)[10] 2 

N/R 
(specialized 

circuitry) 
2 in 1† 4 ✔ - - ✔ - - ΔI vs.  Δf_s 

parameter space - ± 5- 20% 

Possible 
(non 

supervised 
identificatoi

n plaen)   

- ✔ PMMA transfer + 
E-beam lithography 

Shin et al. 
(1997)[11] 2 73 mW 2 in 1† 1 ✔ ✔ - - - - - - 

(1 gas tested) - - - X drop casting 

Li et al. 
(2007)[12] 

Multi-
transduction 

3 
N/R 

(specialized 
circuitry) 

7 4 ✔ - - ✔ ✔§§ - - - - - - 

✔ Spin coating 
(polymer) 
X SnO2 with drop 
casting 

This work 
(2022) 3 28 mW 4 5 ✔ ✔ ✔ - - ✔ 

CNN (real-time 
with sliding 

window) 
97.95% 14% ✔ ✔ ✔ Local hydrothermal 

✔ Electrodeposition 



  

35 
 

References 

[1] N. X. Thai, M. Tonezzer, L. Masera, H. Nguyen, N. V. Duy, N. D. Hoa, Anal. Chim. 

Acta 2020, 1124, 85–93. 

[2]  M. Tonezzer, Sens. Actuators, B 2019, 288, 53–59. 

[3] S. Acharyya, B. Jana, S. Nag, G. Saha, P. K. Guha, Sens. Actuators, B 2020, 321, 

128484. 

[4] D. S. Lee, S. W. Ban, M. Lee, D. D. Lee, IEEE Sens. J. 2005, 5, 530–536. 

[5] N. J. Pineau, J. F. Kompalla, A. T. Güntner, S. E. Pratsinis, Microchim. Acta 2018, 

185, 1–9. 

[6] M. Kang, I. Cho, I. J. Park, J. Jeong, K. Lee, B, Lee, D. Del Orbe Henriquez, K. 

Yoon, I. Park, ACS Sens. 2022, 7, 430–440. 

[7] A. T. Güntner, V. Koren, K. Chikkadi, M. Righettoni, S. E. Pratsinis, ACS Sens. 2016, 

1, 528–535. 

[8] L. Wang, J. S. Swensen, J. S. Sens. Actuators, B 2012, 174, 366–372. 

[9] F. Gao, W. Xuan, A. Bermak, F. Boussaid, C.-Y. Tsui, J. Luo, Sens. Actuators, B 

2019, 278, 21–27. 

[10] Y. Chen, H. Zhang, Z. Feng, H. Zhang, R. Zhang, Y. Yu, J. Tao, H. Zhao, W. Guo, 

W. Pang, X. Duan, J. Liu, D. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 21742–21749. 

[11] H. W. Shin, C. Lloyd, J. W. Gardner, Transducers 97, Int. Conf. Solid-State Sens. 

Actuators 1997, 2, 935–938. 

[12] Y. Li, C. Vancura, D. Barrettino, M. Graf, C. Hagleitner, A. Kummer, M. 

Zimmermann, K.-U. Kirstein, A. Hierlemann, Sens. Actuators, B 2007, 126, 431–440. 

 


