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A B S T R A C T   

Hierarchical structures allow one to improve device performance by exploiting the synergistic effects of micro/ 
nano multiscale components. However, the structural complexity of hierarchical structures places limits on their 
fabrication and applications. Herein, a novel morphology-controllable wrinkled micro/nano hierarchical struc-
ture (WHS) was developed by integrating micropatterns, nanopatterns, and wrinkles on a single substrate to 
overcome these limitations. Each structure could be individually controlled, which offers unlimited design di-
versity. The produced WHS was used as a superhydrophobic triboelectric nanogenerator. Compared to a 
nanogenerator with on a film structure, the WHS-based nanogenerator showed a superior contact angle of 
152.5◦, which is indicative of high hydrophobicity, and an enhanced (by 608%) triboelectric effect, which was 
ascribed to the highly rough surface of the WHS. The WHS-based nanogenerator was used to fabricate a self- 
powered and water-repellent cough detection sensor with an entirely superhydrophobic structure and stable 
superior sensing performance during repeated water spraying.   

1. Introduction 

The superior properties of certain artificial and natural materials can 
be ascribed to their multiscale structures [1]. Micro/nano hierarchical 
structures are characterized by the synergistic effect between the micro- 
and nanoscale components, which determines the physicochemical 
properties of the entire structure. For example, the gecko-foot hierar-
chical structure exhibits strong adhesion, easy detachment, and revers-
ibility due to an increase in intermolecular forces between this structure 
and its contact surface [2]. In addition, well-designed hierarchical 
structures offer elevated surface area and roughness, thus featuring 
superhydrophobicity and self-cleaning ability [3]. Three-dimensional 
(3D) hierarchical structures can be effectively used not only to fabri-
cate biomimetic functional surfaces such as those mimicking gecko feet 
[4] and lotus leaves [5], but also to improve the performance of elec-
tronic devices such as chemical sensors [6], fuel cells [7], and energy 
harvesting devices [8]. Therefore, over the past few decades, much 
research has been conducted to realize and utilize hierarchical 
structures. 

3D hierarchical structures are commonly constructed by combining 
micro/nanopatterns and wrinkles [9–11]. These components not only 
provide high surface area, but can also endow the hierarchical structure 
with the desired properties. For example, nanopatterns can provide 
functional characteristics such as hydrophobicity/hydrophilicity [12], 
structural color [13], and nanoscale surface roughness [14], while 
micropatterns can be used to tune the mechanical properties such as 
mechanical strength and elasticity [15]. In addition, wrinkles provide 
highly dense multiscale curved structures that can exhibit stretchability 
and highly elevated surface areas [16]. 

However, despite the excellence of 3D hierarchical structures in 
various fields and the availability of numerous structural designs that 
were previously developed, the structural complexity of these structures 
hinders their fabrication and the synergistic implementation of their 
characteristics. As micro/nano hierarchical structures comprise two or 
more structures with different scales, they are difficult to produce using 
conventional micro/nano fabrication methods such as photolithography 
and 2D/3D printing. Therefore, novel fabrication methods allowing one 
to implement diverse hierarchical structures are being intensively 
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researched. 
For example, Kim et al. [17,18] developed a multistep optical 

patterning method and used it to fabricate a uniform micro/nano hier-
archical structure by employing multiple patterned masks with different 
pattern sizes. Advantageously, this method can be used to design and 
stack various patterns in the vertical direction, although the use of a 
rigid substrate precludes the integration of wrinkles. In addition, each 
step of this method affects the underlayer, as the same substrate is 
sequentially deformed to create a hierarchical structure. As an alterna-
tive, Odom’s group [16,19–21] has studied hierarchical structures based 
on multilayered wrinkles, creating hierarchical structures with wrinkles 
via the mechanical deformation (e.g., buckling and heating-induced 
shrinkage) of substrates. This method allows one to control the period-
icity and nanostructure orientation of wrinkles as well as to easily 
fabricate hierarchical structures, thus being useful for preparing 
large-area superhydrophobic substrates. However, as the process relies 
on mechanical instability, only wrinkles (and not regular patterns) can 
be formed, and pattern control beyond orientation is difficult. In addi-
tion, much effort has been directed at the fabrication of 3D hierarchical 
structures by combining the buckling effect with nanoimprinting [22] or 
photolithography with the buckling method [23]. However, the inte-
gration of all three structures into a single substrate remains chal-
lenging, as a deformable substrate is required to produce wrinkled 
structures, while micro- and nanopatterns can be easily fabricated on 
rigid substrates. In addition, a fabrication method that can provide un-
limited design diversity based on the independent control of each 
structure is required. This will enable all three structures to be optimized 
independently for a given application. 

Herein, we developed a morphology-controllable wrinkled micro/ 
nano hierarchical structure (WHS) by using a novel method combining 
nanotransfer, molding, and the buckling effect to integrate micro-
patterns, nanopatterns, and wrinkles on a single substrate. To the best of 
our knowledge, this integration and controllability has been challenging 
to accomplish, especially for nanostructures. In our case, multilayered 
nanopatterns were transferred to increase the shape diversity, whereas 
previously reported hierarchical structures had single-layer nano-
patterns. In addition, micropatterns and wrinkles were independently 
controlled on the same substrate by utilizing the tendency of wrinkles to 
concentrate in areas with lower stiffness (e.g., the regions without 
micropatterning). Therefore, the micropatterns retained their original 
shape during wrinkle fabrication. 

When individual functions are assigned to each structure, the WHS 
can be used as a functional device with the different hierarchical 
structures acting synergistically. To demonstrate the performance and 
practicality of the developed WHS, we used it to construct a super-
hydrophobic triboelectric nanogenerator (S-TENG), in which multilay-
ered nanopatterns and wrinkles increased the surface roughness and 
surface area, while the microstructured elastomer enhanced the aspect 
ratio and uniformity of the surface to maximize the hydrophobicity and 
triboelectric effect. The S-TENG was designed to have superhydrophobic 
positive and negative triboelectric substrates, whereas only one elec-
trode is hydrophobic in conventional hydrophobic TENGs. Finally, the S- 
TENG was attached to a reusable mask to fabricate a self-powered and 
water-repellent cough detection sensor with enhanced performance and 
stability. 

2. Materials and methods 

2.1. Micropatterned elastomer fabrication 

A schematic illustration of the fabrication process is shown in Fig. S1. 
For elastomer microstructuring (Fig. S1-1), SU-8 was patterned on a Si 
wafer by photolithographically using an SU-8 mold using a stepper 
(MDA-8000B, Midas System, Korea) and then treated with a self- 
assembled monolayer (trichloro(1H,1H,2H,2H-perfluorooctyl)silane, 
Sigma-Aldrich, USA) to facilitate the separation of the polymer from the 

SU-8 mold. Subsequently, a commercial elastomer precursor (Dragon 
Skin 10 NV, HYUP SHIN, Korea) was poured on the SU-8 mold and 
cured. The micropatterned elastomer was separated from the SU-8 mold 
and used as a substrate for the WHS. 

2.2. Fabrication of multilayered nanopatterns on polyvinyl alcohol (PVA) 
film 

To produce multilayered nanopatterns on a commercial polyvinyl 
alcohol (PVA) film (Alibaba, China) (Fig. S1-2), a nanopatterned poly-
mer mold was fabricated using a Si master prepared by KrF lithography. 
For polymer mold replication, RM-311 resin (Minuta Technology Co., 
Ltd., Korea; polyurethane) was poured onto the prepared Si master. A 
transparent polyethylene terephthalate (PET) film was used as a sub-
strate to cover the resin. To facilitate the complete penetration of the 
resin into the nanopatterns of the Si master, pressure was applied using a 
hand roller. Then, UV light was used to fully polymerize the resin and 
thus form the polymer mold by separating it from the Si master. This 
process could be repeatedly replicated using the Si master, and various 
nanopatterns could be fabricated using the developed method. The 
detailed fabrication of the polymer mold from the Si master is described 
in our previous works [24–28]. Then, a 40-nm Au layer was deposited 
using an e-beam evaporator (Daeki Hi-Tech Co. Ltd., Korea) and trans-
ferred onto the PVA film at a temperature above the PVA glass transition 
temperature. In this transfer process, the first nanopattern layer was 
transferred by mechanical interlocking with the rubbery substrate, and 
subsequent layers were transferred via metallic bonding, as discussed in 
our previous works. Multilayered nanopatterns could be fabricated on 
the PVA film by repeating this process. 

2.3. Fabrication of wrinkles and integration 

For hierarchical structuring on the elastomer (Fig. S1-3), the 
micropatterned elastomer was treated with (3-aminopropyl)triethox-
ysilane (APTES; Sigma-Aldrich, USA) and coated with a UV-curable 
adhesive (NOA 61, Sigma-Aldrich, USA) to facilitate adhesion between 
the elastomer and Au [25]. Then, the multilayered nanopatterns were 
attached to the elastomer under pre-strain (Table S1), which was applied 
using a customized biaxial stage (Fig. S2). The biaxial stage was then 
immersed into hot water at 90 ◦C for 2 h to remove PVA, and pre-strain 
was released to afford the WHS. 

2.4. Contact angle measurements 

Prior to contact angle measurements (DO4010 contact angle meter, 
Kruss GmbH, Germany), the substrates were treated with a self- 
assembled monolayer (trichloro(1H,1H,2H,2H-perfluorooctyl)silane; 
Sigma-Aldrich, USA) to render the inherently hydrophilic Au to a hy-
drophobic state and to increase the hydrophobicity of per-
fluoropolyether (PFPE). To measure the contact angle, a 10-μm droplet 
of DI water was placed on the surface of each sample. 

2.5. TENG fabrication 

First, for the negative triboelectric substrate, a nanopatterned PFPE 
was fabricated. The UV-curable PFPE resin was poured onto the Si 
master mold with nanoscale line patterns, imprinted using a roller, and 
cured using UV light for 3 min. After detachment of the nanopatterned 
PFPE film from the master, a 40-nm-thick Au electrode was deposited on 
this film and connected to a wire using Ag paste. Second, for the positive 
triboelectric substrate, the wire was also connected to the WHS using Ag 
paste. The electrode region was covered with an epoxy adhesive to 
enable shielding from the droplet. 
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2.6. S-TENG characterization 

An electrodynamic shaker (The Modal Shop, USA) was used to 
vibrate the device at various frequencies. The shaker was controlled 
using a waveform generator (33210A, Keysight, USA), and the electric 
signals, including open-circuit voltage, current density, and charge 
density, were measured using an electrometer (6514, Tektronix, USA) 
and an oscilloscope (MDO3022, Tektronix, USA). The measurement 
equipment was connected to a laptop for data logging. In addition, the 
contact force was measured by a load cell of a tensile tester (Shimadzu, 
Japan). The detailed measurement setup is shown in Fig. S3. 

2.7. Characteristics of S-TENG and its application to cough detection 

To verify the sensing performance of the S-TENG, water was sprayed 
at a specific time during device vibration at an input signal of 4 Hz, and 
the open-circuit voltage was measured. Subsequently, the positive 
triboelectric substrate was attached to the outer layer of a commercial 
reusable mask (Magic V-line mask, Yepdog, Korea), and the negative 
triboelectric substrate was attached to the exhalation valve of the mask 
inner layer. The outer layer of the mask was separated from the inner 
layer by four spacers with a distance of 1.5 cm. An oscilloscope 
(MDO3022, Tektronix, USA) was used to measure the open-circuit 
voltage in real time. 

3. Results and discussion 

3.1. Fabrication of morphology-controllable WHSs 

Fig. 1 shows a schematic of WHS fabrication and related scanning 
electron microscopy (SEM) images. As mentioned above, a combination 
of nanotransfer, molding, and buckling methods was used. First, 

multilayered Au nanopatterns on a polyurethane acrylate (PUA) mold, 
which was fabricated by a nanoimprinting process, were transferred 
onto a water-soluble PVA film (Fig. 1a). Our previous study showed that 
nanopatterns can be transferred onto a semicrystalline polymer sub-
strate at its glass transition temperature [29]. In this transfer process, the 
first layer of nanopatterns is transferred by mechanical interlocking with 
the rubbery substrate, and subsequent layers are transferred via metallic 
bonding, which is denoted as nanowelding. This method allows not only 
the design of various nanopatterns but also the fabrication of 3D 
multilayered nanostructures. Second, a microhole patterned SU-8 mold 
was photolithographically fabricated, and a micropillar patterned elas-
tomer was then molded using the SU-8 mold. In this step, arbitrary 
microsize patterns, instead of microhole patterns, can be utilized 
depending on the desired application. Finally, pre-strain was applied to 
the patterned elastomer to afford high-density wrinkle structures. The 
nanostructured PVA film was then attached to the elastomer using a 
UV-curable adhesive, and the PVA (except for nanostructures) was 
removed in hot water (Fig. 1b). In this process, wrinkles are generated 
by the compressive buckling of the stiff Au and adhesive skin layers on 
the pre-strained substrate [30]. In addition, even though pre-strain was 
applied to the entire elastomer, the pillars maintained their original 
shape and pattern owing to their relatively large thickness and high 
effective stiffness (Fig. S4), as the pre-strain tends to concentrate in the 
areas with lower stiffness. Since the wrinkles were formed only between 
the pillars, the wrinkles and micropatterns were controlled indepen-
dently. In addition, the use of an adhesive to attach the nanopatterns to 
the micropillars improved the mechanical robustness of the WHS [31]. 

Fig. 1c shows a schematic illustration and an inclined-view SEM 
image of the fabricated morphology-controllable WHS, with the details 
of the fabrication process and the results of each step explained in 
Figs. S1 and S2. The final WHS comprised a complex of micropatterns, 
nanopatterns, and wrinkles, and the morphology of each structure could 

Fig. 1. Schematic of fabrication process of the morphology-controllable wrinkled micro/nano hierarchical structure (WHS) and scanning electron microscopy (SEM) 
images of fabricated structure. (a) Nanotransfer of nanopatterns onto the water-soluble film. (b) Elastomer molding and integration of nanopatterns, micropatterns, 
and wrinkles: Multilayered nanopatterns were transferred onto a pre-strained micropatterned elastomer, and the water-soluble film was dissolved. (c-i) Schematics 
and (c-ii) inclined-view SEM image of the fabricated WHS. (d-i) Top-view and (D-ii) side-view SEM images of the transferred multilayered nanopatterns on the water- 
soluble film. (e-i) Top view and (e-ii) side view SEM images of the fabricated WHS on the elastomer substrate. 
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be individually controlled. Fig. 1d shows the top and side SEM views of 
well-aligned nanopatterns on the PVA film before attachment to the 
elastomer. These multilayered nanostructures composed of the first- and 
second-layer nanolines maintained their original mesh shape during the 
fabrication process (Fig. 1e-i). In addition, irregular and highly dense 
wrinkles were successfully formed between the micropillars of the 
elastomer substrate, as shown in Fig. 1e-ii. 

3.2. Effect of fabrication parameters on the WHS surface morphology 

As discussed in Section 3.1, the developed fabrication process 
allowed not only the integration of nanopatterns, micropatterns, and 
wrinkles, but also the control of individual structures. Fig. 2 shows SEM 
images of diverse WHS surface morphologies for different nanopatterns, 
micropatterns, and wrinkles, with detailed structural information pre-
sented in Table S1. As a first controllable parameter, multilayered 
nanopatterns (including film, line–line, dot–line–line, and line–line–dot 
patterns) were independently fabricated on the PVA films (Fig. S5) and 
transferred onto the elastomer. When an Au film (without pattern) was 
applied to the PVA film, the micropillars were not observed because of 

the high bending stiffness of the Au film even at a low thickness of 
40 nm. However, when multilayered nanopatterns were transferred, the 
micropillars and nanopatterns retained their original shapes (Fig. 2a). 
This method of 3D nanopattern transfer allowed an unlimited number of 
nanostructure designs to be obtained by variation of each layer. The 
micropatterns could also be varied via a photolithographic patterning 
process. 

Several nanostructure designs with different pre-strain and micro-
pattern spacing were investigated. First, the micropattern shape was 
fixed as an array of 10-µm-diameter pillars, and the spacing between 
them was varied between 10 and 40 µm to verify the relationship be-
tween micropatterns and wrinkles. Larger spacings allowed more 
wrinkles to be formed between pillars (Fig. 2b-i), while overly narrow 
spacings caused the wrinkles to cover the micropillars (Fig. S6). Second, 
the micropattern shape was changed from micropillar to micropyramid, 
and the size of the micropattern was varied between 10 and 50 µm to 
verify the design diversity of the micropattern. As the size of the 
micropyramids increased, the nanopatterns adhered to the pyramids 
conformally (Fig. 2b-ii). Finally, the wrinkles were controlled by the 
degree of pre-strain. When nanopatterns were transferred without pre- 

Fig. 2. SEM images of diverse WHSs with different nanopatterns, micropatterns, and wrinkles demonstrating the design diversity and shape controllability of surface 
morphology. SEM images of the WHS with (a) various multilayered nanopatterns, (b-i) different ratios between the diameter and spacing and (b-ii) shape and size of 
micropatterns, and (c) different pre-strains as controllable parameters. (c-i) Top view of the WHS and (c-ii) side view of wrinkles between micropatterns. 
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straining, the mesh nanopatterns conformally covered the elastomer 
without any wrinkles (Fig. 2c-i, left image). On the other hand, several 
multiscale wrinkles were generated under 90% pre-strain (Fig. 2c-i, 
right image). Notably, the density of wrinkles increased with increasing 
pre-strain, although a closed trench that made the surface relatively flat 
was obtained at an excessively large pre-strain (Fig. 2c-ii). In other 
words, even though the density of wrinkles under 90% pre-strain 
exceeded that under 50% pre-strain, the effective surface area and 
roughness were larger in the latter case (Fig. S7). Therefore, when 
designing a hierarchical structure, one should choose a pre-strain and 
micropattern spacing optimally suited for the target application. 

3.3. Contact angle analysis 

Hydrophobicity is an essential property for TENG devices because it 
enables them to work as self-powered sensors and energy harvesting 
devices with humidity-resistant, contamination-resistant, and self- 
cleaning effects [32]. Since the developed WHS featured a large sur-
face area and high roughness, which are the most essential features of 
hydrophobic surfaces and TENGs, it was used to fabricate an S-TENG. 

First, contact angle measurements were performed to evaluate the 
wettability of the WHS. A flat Au film without any micro/nanostructures 
exhibited a contact angle of 93.8 ± 0.5◦, which increased to 
101.4 ± 0.7◦ in the case of line–line nanopatterns and to 103.4 ± 0.3◦ in 
the case of line–line–dot nanopatterns (Fig. 3a). This behavior origi-
nated from the large surface area and high roughness at the nanoscale. 
According to Wenzel’s wetting theory, the contact angle of a hydro-
phobic surface can be increased by surface roughening because of the 
concomitant increase in surface area [18]. This effect was achieved 
herein by the application of multilayered nanopatterns, and wrinkled 
structures were added to the elastomer substrate with line–line–dot 
nanopatterns. 

As shown in Fig. 3b, the apparent contact angle increased with 
increasing pre-strain within the small pre-strain range (0–50%), whereas 
the opposite tendency was observed within the large pre-strain range 
(50–90%). As discussed in Fig. 2, the effective surface area and rough-
ness decreased under extremely large pre-strain owing to the presence of 
closed trenches. Therefore, the apparent contact angle (and thus, 
effective surface roughness) was maximized at 137.6 ± 0.5◦ under the 
pre-strain of 50%. Additionally, according to the Cassie–Baxter model, 
air can be trapped at the droplet–substrate interface in the case of a 
highly complex surface, which results in a higher apparent contact angle 
[18]. In wrinkled structures with nanopatterns, the Wenzel state can 
co-exist with the Cassie–Baxter state, or an intermediate state can be 
generated (Fig. S8) [33]. Therefore, the addition of wrinkles with the 
optimized pre-strain to nanopatterns can significantly increase the 
contact angle because of the formation of a sophisticated surface. 

Subsequently, we investigated how the wettability was affected by 

the addition of micropatterns to the wrinkled and nanopatterned sur-
face. Interestingly, the contact angle decreased to 127.2 ± 0.6◦ for the 
micropattern with a 10-µm spacing but increased to 152.5 ± 1.3◦ with a 
30-μm spacing (Fig. 3c), decreasing again when the spacing further 
increased to 40 µm. This result is believed to reflect two WHS charac-
teristics. (i) Dense micropatterns hinder the formation of wrinkles, and 
the wrinkled structure can exhibit a much larger contact angle than the 
micropatterned structure. This behavior originates from the fact that 
dense and multiscale wrinkles can produce a state that is intermediate 
between the Cassie–Baxter and Wenzel states, whereas the micropattern 
itself is in the Wenzel state. (ii) In the intermediate state, an increase in 
the aspect ratio of the surface structure can improve hydrophobicity 
[34]. Therefore, the addition of micropatterns with a proper pattern 
spacing increases the WHS aspect ratio and, thus, the contact angle. A 
detailed description of the above reasoning is presented in Fig. S8. 
Therefore, a parametric study was conducted to improve the WHS hy-
drophobicity, and the results demonstrated that the developed WHS can 
be used as a superhydrophobic surface. 

3.4. Effect of WHS on the TENG characteristics 

As TENG performance can be improved by increasing the roughness 
and surface area [8,35–37], it was reasonably expected that the devel-
oped WHS can be used to fabricate a high-performance TENG. To verify 
the effects of the WHS on the corresponding TENG, a 
contact-separation-mode device was fabricated and analyzed. To maxi-
mize the triboelectric effects, WHS Au nanopatterns were used as the 
positive triboelectric materials, while PFPE was used as the negative 
triboelectric material (Fig. 4a) [38]. When the two oppositely charged 
surfaces are brought into contact, electrons move from the positive 
material to the negative material, and the open-circuit voltage increases 
with increasing distance between the surfaces. A detailed description of 
TENG principles is shown in Fig. S9. Based on this mechanism, we 
evaluated the WHS TENG characteristics as functions of surface 
morphology, with the experimental setup shown in Fig. S3. 

The open-circuit voltage of the TENG with a flat Au film and flat 
PFPE equaled 7.9 V, whereas a higher value of 13.6 V was obtained 
when the flat PFPE film was replaced by nanopatterned PFPE. In addi-
tion, the voltage increased to 16.5 V as the flat Au film was replaced by a 
line–line–dot nanopattern. This improvement originates from the well- 
known roughening effect of nanopatterns [39]. Notably, the tendency 
of nanopattern-induced improvement was identical to that observed for 
the contact angle, which implies that the line–line–dot nanopattern has 
the highest surface roughness among the patterns used herein, thus 
inducing the maximal improvement of open-circuit voltage output. 

When wrinkles were added to nanopatterns, the voltage output of the 
TENG increased to a maximum of 35.9 V when 70% pre-strain was used, 
which contrasted with the results of contact angle analysis, wherein the 

Fig. 3. Results of contact angle analysis. Effects of (a) nanopatterns, (b) adding wrinkles to the nanopatterns, and (c) adding micropatterns to the wrinkles with 
nanopatterns. The structures were sequentially added to the flat elastomer substrate to verify the effects of each added structure. For these experiments, to measure 
the contact angle, a 10-μm droplet of DI water was placed on the surface of each sample. 
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maximum contact angle was obtained with 50% pre-strain. In the TENG, 
the closed trenches could be stretched under applied pressure during 
operation, which enhanced the voltage output. In contrast, during 
contact angle analysis, these trenches flattened the surface, reducing the 
apparent contact angle. Therefore, the dense wrinkles at 70% pre-strain 
were beneficial for the TENG, even though they were detrimental to the 
wettability. 

Finally, when micropillars were added to the wrinkled structure with 
nanopatterns, the TENG performance was maximized for a spacing of 
30 µm. The maximized output voltage of 48.0 V exceeded that of the flat 
TENG by 608%. In a TENG with uniform micropatterns, the triboelectric 
charges are more easily separated to facilitate the formation of a larger 
dipole moment between the electrodes [40]. However, overly dense 
micropatterns hinder the formation of wrinkles, as observed in the 
contact angle analysis. Therefore, the above results suggest that the 
S-TENG composite structure of wrinkles at 50% pre-strain, line–line–dot 
nanopatterns, and micropatterns with a 30 µm spacing is optimal. 

The developed WHS also showed superior mechanical robustness. 
The optimized TENG maintained its performance after 50,000 cycles of 
repeated contact–release motions (Fig. 4e) and was concluded to be 
suitable for applications (such as energy harvesting and self-powered 
sensing) requiring a long lifetime and even repeated pressure. Other 
detailed parameters of the produced TENG, including the effects of 
frequency, charge density, and force, are presented in Fig. S10. 

3.5. Characterization of the S-TENG 

A water spraying experiment was conducted to characterize the 
water-repellence of the WHS in the S-TENG. In most hydrophobic 
TENGs, only the negative triboelectric substrate can be made hydro-
phobic (Table S2), as the common negative materials such as Teflon and 
polydimethylsiloxane (PDMS) show inherent hydrophobicity. On the 
other hand, the positive triboelectric substrate is generally hydrophilic, 
as positive materials such as fabrics and metals are inherently hydro-
philic. Therefore, it has been challenging to make both TENG substrates 

hydrophobic. However, in our S-TENG, the positive triboelectric sub-
strate (i.e., the developed WHS) exhibited superhydrophobicity due to 
its very rough surface, as discussed in Section 3.3. In addition, the 
negative triboelectric material (PFPE) is inherently hydrophobic, and its 
hydrophobicity could be enhanced by nanopatterning to achieve 
superhydrophobicity. Thus, an entirely superhydrophobic TENG was 
fabricated and characterized, with the negative triboelectric substrate 
fixed as the superhydrophobic nanopatterned PFPE (Fig. S11). 

For comparison, a TENG with an Au film electrode was fabricated. 
The open-circuit voltage of this Au film TENG equaled 12.5 V in air but 
decreased to almost 0 V immediately after water spraying. This behavior 
was ascribed to the fact that the triboelectric effect rarely occurs in 
humid environments, as transferred electrons can escape from the sur-
face to the droplets [41]. The noise-level output lasted 50 min, and the 
voltage subsequently recovered as the water naturally evaporated 
(Fig. 5a). The peak voltage signal of one recovery step (step 1) cycle, 
which indicates the released-state voltage, decreased with time, while 
those of the initial and recovered states were maintained (Fig. 5b). In the 
released state of step 1, the transferred electrons escaped to the locally 
remaining droplets at the surface, which resulted in a voltage drop. 

For the S-TENG comprising the superhydrophobic WHS as a positive 
triboelectric substrate, the voltage output in air (48.0 V) was 3.84 times 
higher than that of the Au film TENG. After water spraying, the voltage 
decreased to the noise level but rapidly recovered within 50 s, as the 
droplets spread out toward the outside of the TENG surface (Fig. 5c). 
Notably, unlike the TENG with a single hydrophobic surface, which 
recovered gradually, a step function-type recovery was observed for the 
S-TENG, because in the latter case, the droplets bounced off before 
naturally evaporating (Fig. S12). The superhydrophobicity of both 
TENG surfaces allowed the droplets to gather in a spherical shape and be 
expelled. In addition, despite the presence of abundant droplets on the 
surface, the S-TENG had locally water-free regions owing to the gath-
ered droplets. Therefore, a sharp voltage output occurred in recovery 
step 1, as the electrons rapidly escaped into the droplets after being 
transferred through the water-free region (Fig. 5d). In conclusion, the S- 

Fig. 4. S-TENG characterization. (a) Schematics of the developed TENG. Dependence of open-circuit voltage on (b) nanopatterns, (c) wrinkles, and (d) micropatterns. 
The structures were sequentially added to the flat elastomer substrate to verify the effects of each added structure. For these experiments, the TENG was vibrated 
using a 2-Hz input signal during the whole experiment. (e) The results of 50,000 cyclic stability tests under a vibration input of 5 Hz. The measured voltage refers to 
the open-circuit voltage. 
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TENG, which had two superhydrophobic surfaces, showed a ten-fold 
faster recovery than the conventional TENG with a single super-
hydrophobic surface. 

3.6. Application of S-TENG to self-powered water-repellent cough 
detection sensor 

The practical utility of the S-TENG was demonstrated by its appli-
cation as a self-powered and water-repellent cough detection sensor. 
Cough is the most common reason for patients to seek medical advice 
from general practitioners, pediatricians, and neurologists [42], and is a 
distressing symptom that results in significant healthcare costs, medical 
consultations, and medication use [43]. More significantly, droplet 
infection caused by coughing is a representative cause of the increasing 
transmission rates of epidemics such as COVID-19 [44] and the bubonic 
plague [45]. Therefore, the detection of coughing patients or members 
of public is important for improving the quality of life. 

Previously reported cough detection sensors employ microphones, 
which cannot detect individual cough signals or be used in noisy envi-
ronments [42,46]. In addition, other wearable pressure sensors attached 
to the mask can be affected by droplets originating from coughing or the 
external environment, as their working principle is based on a change in 
resistance or capacitance and they usually do not have hydrophobic 
surfaces [47–49]. Furthermore, these pressure sensors inevitably require 
a power source because typical resistive-type and capacitive-type sen-
sors require the supply of voltage or current to read electric signal 

changes of the devices [50,51]; thus, self-powered sensors are becoming 
an essential element of wearable sensors, as they can operate for a long 
time without requiring an external power source. To the best of our 
knowledge, the development of self-powered and water-repellent cough 
detection sensors for individual cough detection remains a challenge. 
Therefore, we utilized the developed S-TENG as a self-powered and 
water-repellent cough detection sensor. TENG-based sensors are 
considered self-powered sensors because the device itself generates 
electrical signals by external stimuli without any external power con-
sumption [52]. 

To prepare the TENG-based cough detection sensor, the positive 
triboelectric substrate was attached to the outer layer of a reusable 
mask, and the negative triboelectric substrate was attached to the 
exhalation valve on the inner layer of the mask (Fig. 6a). During exha-
lation, the airflow opens the exhalation valve and presses the TENG, 
whereas during inhalation, air enters through the filters next to the 
exhalation valve, which closes the valve and releases the pressure on the 
TENG. 

When the sensor was prepared using the Au film TENG, the responses 
of the pressure sensor to coughing and strong exhalation equaled 1–6 
and 1 V, respectively, whereas the response to shouting could not be 
distinguished from noise (Fig. 6b). Even though the coughing signal was 
distinguishable from other signals, the sensor response to coughing 
rapidly decreased to 0.2 V upon water spraying (Fig. 6c). The sprayed 
droplets remained on the TENG surface, as only the nanopatterned PFPE 
(and not both substrates) was hydrophobic. 

Fig. 5. Effects of the superhydrophobic surface on the TENG performance. (a) Results of the water spraying test for the Au film TENG and (b) enlarged graph showing 
the effect of the recovery step on the shape of the voltage recovery curve. (c) Results of water spraying test obtained for the S-TENG and (d) enlarged graph showing 
the effect of the recovery step on the shape of the voltage recovery curve. Water was sprayed at a specific time during TENG vibration under an input signal of 4 Hz. 
The measured voltage refers to the open-circuit voltage. 
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On the other hand, the sensor prepared using the developed S-TENG 
had responses of 5–24, 3, and 1 V upon coughing, strong exhalation, and 
shouting, respectively, as shown in Fig. 6d and Video 1. Thus, the S- 
TENG had an approximately five-fold higher sensitivity than the Au film 
TENG owing to the very rough surface of the former. Furthermore, as 
both substrates of the S-TENG were superhydrophobic, sprayed water 
droplets and droplets generated by coughing were rapidly expelled from 
the TENG under the force of gravity. The developed sensor maintained 
its performance without response degradation even after being sprayed 
with water three times (Fig. 6e and Video 2). Therefore, it was 
concluded that the self-powered and water-repellent cough detection 
sensor based on the developed S-TENG exhibits high sensitivity to 
coughing and superior water repellency. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.105978. 

4. Conclusions 

A morphology-controllable wrinkled micro/nano hierarchical 
structure was developed by integrating micropatterns, nanopatterns, 
and wrinkles on a single substrate using a novel fabrication method 
combining nanotransfer, molding, and the buckling effect, which 
allowed independent control of the three different structures in the 
WHS. As this method allows each structure to be controlled individually, 
it offers unlimited design diversity. Additionally, to apply the fabricated 
WHS as an S-TENG, we investigated the surface hydrophobicity and 
triboelectric effects. The very rough surface of the WHS enhanced the 
hydrophobicity and triboelectric effect; specifically, a superior contact 
angle of 152.5◦ and a 608% enhancement of triboelectric effects 
compared to the film-based TENG were observed. Furthermore, the S- 
TENG was utilized as a self-powered and water-repellent cough detec-
tion sensor that had an entirely superhydrophobic structure and main-
tained superior detection performance during repeated spraying with 
water owing to its hierarchical structure. To the best of our knowledge, 
this study is the first attempt of integrating three types of structures 
(micropatterns, nanopatterns, and wrinkles) onto a single substrate and 

is therefore a benchmark for subsequent research. Furthermore, the 
proposed structure and fabrication methods are expected to contribute 
to the use of hierarchical structures in broader and real-life applications 
such as catalysts, energy harvesting, chemical sensing, contact angle 
engineering, and biomedical devices. 
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Fig. 6. Application of the S-TENG as a self-powered and water-repellent cough detection sensor. (a) Photograph of a reusable mask with the cough detection sensor. 
In the sensor, the positive triboelectric substrate was attached to the outer layer of the reusable mask, and the negative triboelectric substrate was attached to an 
exhalation valve of the mask inner layer. The outer layer of the mask was separated from the inner layer by spacers. (b) Sensor responses to coughing, strong 
exhalation, and shouting. (c) Output voltage-time curve recorded for coughing, with water sprayed at a specific time. (d), (e) Results obtained when the same 
experiments were conducted with the S-TENG. All the load resistors used in these experiments were 10 MΩ. 
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